JOURNAL OF EDUCATIONAL ISSN: 2011- 421X Arcif Q3 معامل التأثير العربي 1.5 العدد 18

COMPACTNESS MODULO IN FIBREWISE IDEAL TOPOLOGICAL SPACE

N.S.Abdanabi¹, Amal El-Aloul² and Ashraf Alhanafi³
Department of Mathematics Faculty of Science
Al-Asmarya Islamic University

¹nsalem1962008@yahoo.com, ²alelouleamal@gmail.com and

³Alhanfi2000@gmail.com

Abstract: The purpose of this paper is to study fibrewise compactness modulo in fibrewise ideal topological spaces which is called fibrewise *I*-compact space. Also we study some of their properties with some of the results in fibrewise compact space have been generalized of fibrewise *I*-compact space.

Keywords: fibrewise I- compact, open cover, projection function.

1. Introduction

A fibrewise topological space over B is a topological space X with a continuous function P: $X \to B$ called the projection, and B called the base space. Most of the results can be found in James [6] 1984 ,[7] 1991 .The topic of ideal in topological space is introduced by Kuratowski[9] in 1933 and [10] in 1966 .In 1945 [14] introduced the concept of a local function and a kuratowskiclosure operator . If I is an ideal on a topological space (X,τ) , then we can construct a topology on X which denoted by $\tau^*(I)$, that is in[8] . The concept of compactness modulo an ideal is introduced by Newcomb[12], and had been studied by Rancin[13] . In this paper we define a concept called fibrewise I-compact topological space over B. Also we study and discuss some of their properties, in particular we use the notion of fibrewise g-closed sets to prove theorem [3.6] with some corollaries.

2. Some preliminary and Definitions

Definition2.1.[7]: Let B be any set. Then fibrewise set over B consists of a set X together with a function p: $X \rightarrow B$ which is called the projection function.

For $b \in B$, the fibre over b is the subset $X_b = P^{-1}(b)$ of X. Also for each $B' \subset B$, then $X_{B'} = p^{-1}(B')$ is called a fibrewise set over B with the projection P. If $X' \subset X$ then X' is a fibrewise set over B with projection $P|_{X'}$.

Definition2.2. [7]: If X and Y are fibrewise sets over B, with projections p and q respectively, a function f: $X \rightarrow Y$ is said to be fibrewise function if qf = p, that is $f(X_b) \subseteq Y_b$ for each $b \in B$.

Definition2.3. [7]:Let B be a topological space. Then a fibrewise topology on a fibrewise set X over B is any topology on X for which the projection p is continuous.

JOURNAL OF EDUCATIONAL ISSN: 2011- 421X Arcif Q3

معامل القاثير العربي 1.5 العدد 18

A fibrewise topological space over the space B is defined to be a fibrewise set over B with fibrewise topology.

Definition2.4. [6]: Let X be a fibrewise topological space over B. Then X is fibrewise compact if for every fibre X_b of $X,b \in B$ and every covering Γ of X_b by open sets of X there exists a neighborhood W of B in B and a finite subset Γ_0 of Γ covers X_W .

Definition2.5. [6]: Let X be fibrewise topological space over B and let $A \subseteq X$. Then A is fibrewise compact subset of X if for every A_b , $b \in B$ where $A_b = A \cap X_b$ and every covering Γ of A_b by open sets of X, there exists a neighborhood W of B and a finite subset Γ_0 of Γ covers A_W where $A_W = A \cap X_W$.

Definition2.6. [1]: A fibrewise ideal on a fibrewise topological space (X, τ) over B is a nonempty collection I of subsets of X which satisfies

- (i) A∈ I and B⊆A then B∈ I
- (ii) A∈ I and B∈ I then A∪B∈ I

Lemma 2.7. [1]: Let $f: X \rightarrow Y$ be a fibrewise injection, where X and Y are fibrewise sets over B. If I is any fibrewise ideal on X then $f(I) = \{f(I_1): I_1 \in I\}$ is a fibrewise ideal on Y.

If I is a fibrewise ideal on X and $Y \subseteq X$, then $J = \{Y \cap I_1, I_1 \in I\}$ is a fibrewise ideal on Y.

If (X, τ) is a fibrewise topological space over B and I is a fibrewise ideal on X, then the triplet (X, τ, I) is called a fibrewise ideal topological space over B.

Definition2.8.[1]: Let (X, τ, I) be a fibrewise ideal topological space over B, then for any $A \in P(X)$,

 $A^*(I,\tau) = \{x \in X : A \cap U \notin I \text{ for each neighborhood } U \text{ of } x\}$ is called a fibrewise local function of A with respect to I and τ , we will write A^* for $A^*(I,\tau)$.

Definition2.9. [1]: Let (X, τ, I) be a fibrewise ideal topological space over B. Then the map $cl^*(\): P(X) \to P(X)$ which is defined by $cl^*(A) = A \cup A^*$ for all $A \in P(X)$ is a kuratowski closure operator, we will denote by $\tau^*(I)$ the topology generated by $cl^*()$, that is $\tau^*(I) = \{U \subseteq X: cl^*(X - U) = X - U\}$ which is finer than τ where the collection $\beta(I, \tau) = \{U - I_1: U \text{ is a neighborhood of } x, x \in X, I_1 \in I\}$ is a basis for a topology $\tau^*(I)$. We will write τ^* for $\tau^*(I)$.

Remark2.10.[1]:Let τ^* be the topology induced by the fibrewise ideal I on (X, τ) . We note that this topology is finer than the topology τ and since τ is fibrewise topology, then the projection $p: X \to B$ is continuous relative to τ since τ^* is finer that τ then the projection P is also continuous relative to τ^* this means that τ^* is a fibrewise topology on X.

Example 2.11.[1]: Let (X, τ, I) be a fibrewise ideal topological space over B and A a subset of X, then:

مجسله الستربسوي JOURNAL OF EDUCATIONAL

ISSN: 2011- 421X Arcif Q3

معامل التأثير العربي 1.5 العدد 18

- (i) If $I = \{\emptyset\}$, then $A^* = cl(A)$.
- (ii) If I = P(X), then $A^* = \emptyset$.

Note $x \notin A^*$ if and only if $(U-J) \cap A = \emptyset$, where U is an eighborhood of x and $J \in I$.

Lemma 2.12. [1]:Let (X, τ, I) be a fibrewise ideal topological space over B and let A be a subset of X, then:

- (i) $A^* = cl(A^*) \subseteq cl(A)$;
- (ii) A is fibrewise τ^* closed if and only if $A^* \subseteq A$.

Definition2.13. [4]: Let (X, τ, I) be an ideal topological space. Then X is I – compact space if for every covering $\{U_{\lambda}, \lambda \in \Gamma\}$ of X by open sets of X there exists a finite subset Γ_0 of Γ such that X- $(U_{\lambda \in \Gamma_0}, U_{\lambda}) \in I$.

3 .Fibrewise I -compact space

Definition3.1: A subset A of a topological space is said to be g-closed set if $clA\subseteq U$ whenever, $A\subseteq U$ and $U\in \tau$.

Definition3.2: A subset A of a fibrewise topological space over B is said to be fibrewise g-closed set if $clA_b \subseteq U$ whenever, $b \in B, A_b \subseteq U$ and $U \in \tau$.

Note: Every closed set A is fibrewise g-closed set.

Definition3.3: Let (X, τ, I) be a fibrewise ideal topological space over B. Then X is fibrewise I-compact space if for every fiber X_b of X, $b \in B$, and every covering $\{U_\lambda, \lambda \in \Gamma\}$ of X_b by open sets of X, there exists a neighborhood W of b in B and a finite subset Γ_0 of Γ such that $X_W - (\bigcup_{\lambda \in \Gamma_0} U_\lambda) \in I$.

The space (X, \tau, I) is called fibrewise I-compact space if X fibrewise I-compact.

Example 3.4: If (X,τ) fibrewise topological space with the fibrewise ideal $I = \{\emptyset\}$, then (X,τ) is fibrewise compact space if and only if $is(X,\tau)$ fibrewise I-compact space.

Definition3.5: Let (X, τ, I) be a fibrewise ideal topological space over B and let A $\subseteq X$. Then A is fibrewise I-compact subset if for every A_b of A, $b \in B$ where $A_b = A \cap X_b$ and every covering $\{U_\lambda, \lambda \in \Gamma\}$ of A_b by open sets of X, there exists a neighborhood W of b in B and a finite subset Γ_0 of Γ such that $A_W - (\bigcup_{\lambda \in \Gamma_0} U_\lambda) \in I$ where $A_W = A \cap X_W$.

Theorem3.6: Every fibrewise g- closed subset of fibrewise I-compact space is fibrewiseI- compact.

Proof: Let A be fibrewise g-closed subset of (X, τ, I) . Let $\{U_{\lambda}, \lambda \in \Gamma\}$ be an open cover of A_b , $b \in B$ such that $A_b \subseteq \cup_{\lambda \in \Gamma} U_{\lambda}$. Since X is fibrewise I-compact then $\{U_{\lambda}, \lambda \in \Gamma\} \cup (X_b - clA_b)$ is open cover of X_b , $b \in B$, therefore there exists a neighborhood W of b in B and a finite subset Γ_0 of Γ such that either $X_W - (\{\cup_{\lambda \in \Gamma_0} U_{\lambda}\} \cup (X_b - clA_b)) \in I$ or

$$\begin{split} X_W - (\cup_{\lambda \in \Gamma_0} U_\lambda) \in I & \text{ .either } \left[X_W - \left(\left\{ \cup_{\lambda \in \Gamma_0} U_\lambda \right\} \cup \left(X_b - clA_b \right) \right) \right] \cap A \\ & \Longrightarrow (X_W \cap A) - \left(\cup_{\lambda \in \Gamma_0} U_\lambda \right) \epsilon I \Longrightarrow A_W - \left(\cup_{\lambda \in \Gamma_0} U_\lambda \right) \in I \text{ or } \\ \left[X_W - \left(\cup_{\lambda \in \Gamma_0} U_\lambda \right) \right] \cap A \subset X_W - \left(\cup_{\lambda \in \Gamma_0} U_\lambda \right) \in I. \end{split}$$

JOURNAL OF EDUCATIONAL

ISSN: 2011-421X Arcif Q3

معامل التأثير العربي 1.5 ונפנג 18

So $A \cap X_W - (\bigcup_{\lambda \in \Gamma_0} U_\lambda) \in I$ and $A_W - (\bigcup_{\lambda \in \Gamma_0} U_\lambda) \in I$. Hence A is fibrewise I-

From Theorem3.6.we have get the following corollaries.

Corollary 3.7: Every closed subset of fibrewise I - compact space is fibrewise I -

Corollary 3.8: If F is closed subset and K is fibrewise I - compact subset of X. Then $F \cap K$ is fibrewise I - compact.

Corollary 3.9: If A is a fibrewise I - compact in X and C is an open set such that C ⊆ A. Then A – C is fibrewise I - compact.

Theorem3.10: Let $f: X \to Y$ be any continuous fibrewise bijection function where X, Y are fibrewise ideal topological spaces over B with fibrewise ideals I, f (I) on X, Y respectively. If X is fibrewise I -compact then Y is fibrewise I -compact.

Proof. Let $\{U_{\lambda}, \lambda \in \Gamma\}$ be an open cover of $f(X_h) = Y_h, b \in B$. Since f is continuous fibrewise function, then $\{f^{-1}(U_{\lambda}), \lambda \in \Gamma\}$ is an open cover of $X_b = f^{-1}(Y_b)$. Since X is fibrewise I-compact there exists a neighborhood W of b in B and a finite subset Γ_0 of Γ such that $X_W - \bigcup_{\lambda \in \Gamma_0} f^{-1}(U_\lambda) \in I$. Now $(f(X_W) - \bigcup_{\lambda \in \Gamma_0} f^{-1}(U_\lambda)) \in f(I)$, but $f(X_W) - f(\cup_{\lambda \in \Gamma_0} f^{-1}(U_\lambda)) \subset f(X_W - \cup_{\lambda \in \Gamma_0} f^{-1}(U_\lambda)) \quad \text{.This} \quad \text{implies} \quad f(X_W) - f(X_W) = f(X_W) - f(X_W) - f(X_W) - f(X_W) = f(X_W) - f(X_W) - f(X_W) = f(X_W) - f(X_W) - f(X_W) - f(X_W) = f(X_W) - f(X_W) - f(X_W) - f(X_W) = f(X_W) - f(X_W) - f(X_W) - f(X_W) - f(X_W) - f(X_W) = f(X_W) - f(X$ $f\left(\bigcup_{\lambda \in \Gamma_{\alpha}} f^{-1}(U_{\lambda})\right) \in f(I)$ where f(I) is a fibrewise ideal on Y by Lemma 2.7. $\mathrm{As}(f(X_W) - \cup_{\lambda \in \Gamma_0} U_\lambda) \subseteq (f(X_W) - f\left(\cup_{\lambda \in \Gamma_0} f^{-1}(U_\lambda)\right)) \ , \ \mathrm{so} \ (Y_W - (\cup_{\lambda \in \Gamma_0} U_\lambda)) \in f(I) \ .$

This means that Y is fibrewise I- compact.

Theorem 3.11: Let (X,τ,I) be any fibrewise ideal topological space over B and let A be a subset of X such that for every open set U with A⊆ U there is fibrewise Icompact set C with $A \subseteq C \subseteq U$. Then A is fibrewise I-compact.

Proof. Let $\{U_{\lambda}, \lambda \in \Gamma\}$ be a τ_A - open cover of A_b , Where $b \in B$, then there is open sets $\{V_{\lambda}, \lambda \in \Gamma: V_{\lambda} \in \tau\}$ in X such that $U_{\lambda} = V_{\lambda} \cap A$. By the given condition, there exists a fibrewise I- compact subset C of X such that $A \subseteq C \subseteq \bigcup_{\lambda \in \Gamma} V_{\lambda}$. Then $\{V_{\lambda} \cap C, \lambda \in \Gamma\}$ is a τ_C - open cover of C_b, b∈B . As C is fibrewise I-compact, there exists a neighborhood W of b in B and a finite subset Γ_0 of Γ such that $C_W - \bigcup_{\lambda \in \Gamma_0} (V_{\lambda} \cap C) \in I$ where $C_W = C \cap X_W, I_C = \{I_1 \cap C, I_1 \in I\}$ Let $C_W - U_{\lambda \in \Gamma_0} (V_{\lambda} \cap C) = I_1 \cap C$

Since $C_W = \cup_{\lambda \in \Gamma_0} (V_\lambda \cap C) \cup (I_1 \cap C)$, then $C_W \cap A = \left[\cup_{\lambda \in \Gamma_0} (V_\lambda \cap C) \cup (I_1 \cap C) \right] \cap$ $A \Rightarrow C_W \cap A = [U_{\lambda \in \Gamma_0} (V_{\lambda} \cap C \cap A)] \cup [I_1 \cap C \cap A].$

 $\Rightarrow A_W = \left[\cup_{\lambda \in \Gamma_0} (V_{\lambda} \cap A) \right] \cup \left[I_1 \cap A \right] \Rightarrow A_W - \cup_{\lambda \in \Gamma_0} (V_{\lambda} \cap A) = I_1 \cap A \in I_A.$

Implying that A is fibrewise I- compact.

Corollary 3.12: If every open subset of X is fibrewise I- compact, then every subset of X contained in open subset is fibrewise I- compact.

Theorem3.13: If A and C are fibrewise I- compact subsets of ideal topological space (X,τ,I) over B, then $A \cup C$ is fibrewise I-compact in X.

JOURNAL OF EDUCATIONAL ISSN: 2011- 421X Arcif Q3

معامل التأثير العربي 1.5 العدد 18

Proof. Let $\{U_{\lambda}, \lambda \in \Gamma\}$ be an open cover of $(A \cup C)_b = A_b \cup C_b$ in X where $b \in B$, then $\{U_{\lambda}, \lambda \in \Gamma\}$ is open cover of A_b and C_b since A and C are fibrewise I-compact, there exist two neighborhoods W_1 and W_2 of b in B, $I_1, I_2 \in I$ and finite subset Γ_0 and Γ_1 such that $A_{W_1} - (\bigcup_{\lambda_i \in \Gamma_0} U_{\lambda_i}) = I_1$, where $A_{W_1} = A \cap X_{W_1}$ and $C_{W_2} - (\bigcup_{\lambda_k \in \Gamma_1} U_{\lambda_k}) = I_2$ where

 $\begin{array}{l} C_{W_2} = C \cap X_{W_2}, A_{W_1} = \left[\cup_{\lambda_i \in \Gamma_0} U_{\lambda_i} \right] \cup I_1 \\ \text{and} \\ C_{W_2} = \left[\cup_{\lambda_i \in \Gamma_0} U_{\lambda_i} \right] \cup \left[\cup_{\lambda_k \in \Gamma_1} U_{\lambda_k} \right] \cup \left[I_1 \cup I_2 \right] \\ = \cup_{\lambda_i \in \Gamma_0, \lambda_k \in \Gamma_1} \left[U_{\lambda_i} \cup U_{\lambda_k} \right] \cup \left[I_1 \cup I_2 \right] \\ \text{, where } I_1 \cup I_2 \in I \quad \text{, and } W_1 \cap W_2 \quad \text{is a neighborhood of b in B , so we have} \\ \left(A_{W_1} \cup C_{W_2} \right) - \cup_{\lambda_i \in \Gamma_0, \lambda_k \in \Gamma_1} \left[U_{\lambda_i} \cup U_{\lambda_k} \right] \in I \\ \end{array} \quad . \\ \text{Since} \\ \end{array}$

 $(A \cup C)_{W_1 \cap W_2} \subseteq A_{W_1} \cup C_{W_2}$, so $(A \cup C)_{W_1 \cap W_2} - \bigcup_{\lambda_i \in \Gamma_0, \lambda_k \in \Gamma_1} [U_{\lambda_i} \cup U_{\lambda_k}] \in I$, that is $A \cup C$ is fibrewise I-compact.

Theorem3.14: Every fibrewise compact space X over B is fibrewise I- compact for any fibrewise ideal on X.

Proof .Let (X, τ) be a fibrewise compact space X over B, let I be any fibrewise ideal on X and $\{U_{\lambda}, \lambda \in \Gamma\}$ open cover of X_b , $b \in B$, since (X, τ) is fibrewise compact space, so there exists a neighborhood W of b in B and a finite subset Γ_0 of Γ such that $X_W \subseteq (\bigcup_{\lambda \in \Gamma_0} U_{\lambda})$ and $X_W = (\bigcup_{\lambda \in \Gamma_0} U_{\lambda}) = \emptyset \in I$. Therefor X is fibrewise I- compact.

Theorem3.15: Let (X,τ,I) be an I- compact space, then (X,τ,I) is fibrewise I-compact space.

Proof .Let (X,τ,I) be I- compact space, let $\{U_{\lambda},\lambda \in \Gamma_j\}$ be an open cover of $X_{b_j},b_j \in B$ $j \in J$, so $\bigcup_{\lambda \in \Gamma_j} U_{\lambda}$, $j \in J$ is open cover of X where $\bigcup_{\lambda \in \Gamma_j} U_{\lambda} = \bigcup_{\lambda \in \Lambda} U_{\lambda}$ (by taking $\bigcup_{j \in J} \Gamma_j = \Lambda$,

 (X,τ,I) is I- compact space, there exists a finite subset Λ_0 of Λ such that $X-(\cup_{\lambda\in\Lambda_0}U_\lambda)\in I$, since $X_{W_j}\subseteq X$ for some neighborhood W_j of b_j in B $j\in J$, so we have $X_{W_i}-(\cup_{\lambda\in\Lambda_0}U_\lambda)\in I$. Hence (X,τ,I) is fibrewise I- compact.

Theorem3.16: The following are equivalent for a fibrewise topological ideal space $(X,\tau,1)$:

- (i) (X,τ,1) is fibrewise I- compact.
- (ii) (X,τ*, I) is fibrewise I-compact.
- (iii) For any family $\{F_{\lambda}, \lambda \in \Gamma\}$ of closed sets of X_b where $b \in B$ such that $\bigcap_{\lambda \in \Gamma} F_{\lambda} = \emptyset$, there exists a neighborhood W of b in B and a finite subset Γ_0 of Γ such that $\bigcap_{\lambda \in \Gamma_0} (F_W)_{\lambda} \in I$ where $(F_W)_{\lambda} = X_W \cap F_{\lambda}$

Proof .(i) \Rightarrow (ii) Let $\{U_{\lambda}, \lambda \in \Gamma\}$ be a τ^* _open cover of X_b , $b \in B$ such that $U_{\lambda} = V_{\lambda} - E_{\lambda}$, where V_{λ} are open sets in X and $E_{\lambda} \in I$ for all $\lambda \in \Gamma$. Now $\{V_{\lambda}, \lambda \in \Gamma\}$ is open cover of X_b , so there exists a neighborhood W of b in B and a finite subset Γ_0 of Γ such that $X_W - (\bigcup_{\lambda \in \Gamma_0} V_{\lambda}) \in I$. This implies that $X_W - (\bigcup_{\lambda \in \Gamma_0} V_{\lambda}) \subset [X_W - (\bigcup_{\lambda \in \Gamma_0} V_{\lambda})] \cup [\bigcup_{\lambda \in \Gamma_0} E_{\lambda}] \in I$. Therefore (X, τ^*, I) is fibrewise I- compact.

(ii) \Rightarrow (i) it follow from $\tau \subset \tau^*$.

JOURNAL OF EDUCATIONAL

ISSN: 2011- 421X Arcif Q3 معامل القاثير العربي 1.5 العدد 18

(i) \Rightarrow (iii) Let $\{F_{\lambda}, \lambda \in \Gamma\}$ be a family of closed sets of X such that $\cap_{\lambda \in \Gamma} F_{\lambda} = \emptyset$. Then $\{X - F_{\lambda}, \lambda \in \Gamma\}$ is an open cover of X_b , $b \in B$. By (i) since (X, τ, I) is fibrewise I- compact, there exists a neighborhood W of b in B and a finite subset Γ_0 of Γ such that $X_W - (\bigcup_{\lambda \in \Gamma_0} (X - F_{\lambda})) \in I \Rightarrow X_W \cap (\bigcap_{\lambda \in \Gamma_0} F_{\lambda}) = \bigcap_{\lambda \in \Gamma_0} [X_W \cap F_{\lambda}] = \bigcap_{\lambda \in \Gamma_0} F_{W_{\lambda}} \in I$. (iii) \Rightarrow (i)Let $\{U_{\lambda}, \lambda \in \Gamma\}$ be an open cover of X_b where $b \in B$, then $\{X - U_{\lambda}, \lambda \in \Gamma\}$ is a collection of closed sets and $\bigcap_{\lambda \in \Gamma} (X - U_{\lambda}) = \emptyset$. Hence there exists a neighborhood W of b in B and a finite subset Γ_0 of Γ scuh that $\bigcap_{\lambda \in \Gamma_0} [X_W \cap (X - U_{\lambda})] \in I$, that is

Conclusion

We defined and discussed compactness modulo in fibrewise ideal topological space which is called fibrewise I- compact with some results in fibrewise compact space which are generalized in fibrewise I- compact space.

References

- [1] . N . S . ABDANABI , On some concepts of fibrewise topology , thesis in Math Faculty of Science ,Ainshams University ;Eygpt (2018) .
- [2] .M . H . AL smadi , Fibrewise topology .M . Sc .thesis in Math Jordan University ; Jordan (2005).
- [3] M. C. Crabb, I. M. James, Fibrewise homotopy theory, (1998).

 $X_W - (\bigcup_{\lambda \in \Gamma_0} U_{\lambda}) \in I$. This show that (X, τ, I) is fibrewise I-compact.

- [4] A .Gupta and R . Kaur , Compact spaces with respect to an ideal . No . 3 (2014) , 433-448 .
- [5] T. R. Hamlett and D. Jankovic, compactness with respect to an ideal, Boll. Un. Mat. Ita, 7,4-B (1990), 849-861.
- [6]I.M. James, Fibrewise general topology. In Aspects of topology (EdI.M. James and E. R. Kronheimer), Cambridge University press, Cambridge N. Y. 1984.
- [7] I. M. James, Fibrewise topology. Cambridge University press, Cambridge N. Y. 1991.
- [8] D . Jankovic and T .R . Hamlett ,New Topologies ,Amer Math . Monthly , 97 , (1990) , 295-310 .
- [9]K. Kuratowski, Topologie I, Warszawa, (1933).
- [10] K. Kuratowski, Topology Vol. I, Academic press, New York, (1966).
- [11]N . Levine , Generalised closed sets in topology , Rend , Circ ,Mat . Palermo , 19 , (1970) , 89-96 .
- [12]R . L . Newcomb , Topologies which are compact modulo an ideal , Ph .D . Thesis . University.OfCal . At santa Barbara .(1967)
- [13]D. V. Rancin, Compactness modulo an ideal. Soviet Math. Dokl., 13, (1972), 193 197.
- [14] K . Vaidyanathaswamy , The localization theory in set topology , Proc , Indian Acad . Sci , $20\,(1945)$, 51-61 .
- [15] A Wilansky, Topology for Analysis Ginn, Mass, (1977).