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a b s t r a c t

Cancer classification and gene selection in high-dimensional data have been popular research topics in
genetics and molecular biology. Recently, adaptive regularized logistic regression using the elastic net
regularization, which is called the adaptive elastic net, has been successfully applied in high-dimensional
cancer classification to tackle both estimating the gene coefficients and performing gene selection
simultaneously. The adaptive elastic net originally used elastic net estimates as the initial weight,
however, using this weight may not be preferable for certain reasons: First, the elastic net estimator is
biased in selecting genes. Second, it does not perform well when the pairwise correlations between
variables are not high. Adjusted adaptive regularized logistic regression (AAElastic) is proposed to
address these issues and encourage grouping effects simultaneously. The real data results indicate that
AAElastic is significantly consistent in selecting genes compared to the other three competitor regular-
ization methods. Additionally, the classification performance of AAElastic is comparable to the adaptive
elastic net and better than other regularization methods. Thus, we can conclude that AAElastic is a
reliable adaptive regularized logistic regression method in the field of high-dimensional cancer classi-
fication.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, molecular biology and genetics research has been
transformed from the study of individual genes to the exploration
of the whole genome. DNA microarrays technology is one such
technique to measure the expression levels of thousands of genes
in a single experiment [1–4]. Cancer classification based on
microarray gene expression data has become one of the most
active research topics in biomedical research, which is suitable for
comparing the gene expression levels in tissues under different
conditions, such as normal versus abnormal [5,6].

However, cancer classification with DNA microarray data is a
challenging issue because of its high dimensionality and the small
samples size. Typically, the number of genes is more than thou-
sands from a hundred or less tissue samples [7,8]. Due to the high
dimensionality and the small sample size, gene selection is an
important issue for cancer classification and has been extensively
studied in recent years. The application of gene selection methods
allows the identification of a small number of important genes
that can be used as biologically relevant genes of the appropriate
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cancer [9–11]. From the viewpoint of biologists, gene selection can
increase the classification accuracy of the classification method by
removing irrelevant and noisy genes [12–14].

Many gene selection methods have been proposed to select a
subset of genes that can have high classification accuracy for
cancer classification. Recently, regularization methods, which are
capable of conducting efficient gene selection and model estima-
tion simultaneously, have gained popularity [15,16]. From the
statistical perspective, regularization methods can control the
effects of the overfitting and multicollinearity [17]. Numerous
statistical methods have been successfully applied in the area of
cancer classification. Among them, logistic regression (LR) is con-
sidered to be a powerful discriminative method. LR provides pre-
dicted probabilities of class membership and easy interpretation of
the gene coefficients [17]. However, LR is neither applicable nor
suitable for high-dimensional cancer classification because the
design matrix is singular. Thus, the iteration methods, such as
Newton–Raphson's method cannot work [18]. Regularized logistic
regression (RLR) has been successfully applied in high-
dimensional cancer classification [6,19–23]. The benefits of RLR
are that (a) the classification accuracy can often be improved by
shrinking the regression coefficients, and (b) selecting a small
subset of genes that exhibits the strongest effects provides a
classification model with easy interpretation.
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An RLR with different regularization terms can be applied. The
most widely and popular regularized term is the least absolute
shrinkage and selection operator (LASSO) [24]. LASSO imposes the
ℓ1�norm regularization to the loss function. Because of the ℓ1�
norm property, LASSO can perform variable selection by assigning
some genes coefficients to zero. For this reason, LASSO has gained
popularity in high-dimensional data.

Despite the advantage of LASSO, it has three shortcomings
[25,26]. First, LASSO has a biased gene selection, which means it is
an inconsistent gene selection method because it regularizes all
gene coefficients equally [27]. In other words, LASSO does not have
the oracle property, which refers to the probability of selecting the
right set of genes (with nonzero coefficients) converges to one,
and that the estimators of the nonzero coefficients have asymp-
totically normal distribution with the same means and covariances
as if the zero coefficients are known in a prior [28,29]. Related to
this limitation of LASSO, concerning the oracle property, Zou [30]
proposed the adaptive LASSO in which adaptive weights are used
for regularizing different coefficients in the ℓ1�norm regulariza-
tion. Second, it cannot select more genes than the number of
samples. Last, in the microarray gene data, there is grouping
among genes, where genes that share a common biological path-
way have a high pairwise correlation with each other. LASSO tries
to select only one gene or a few of them among a group of cor-
related genes. To overcome the last two limitations, Zou and Hastie
[26] proposed the elastic net regularization, for which the reg-
ularization is a linear combination of ℓ1�norm and ℓ2�norm.
Similar to LASSO, elastic net lacks the oracle property even though
it outperforms LASSO. Zou and Zhang [31] proposed adaptive
elastic net to handle grouping effects and enjoy the oracle prop-
erty simultaneously.

In high-dimensional classification data, however, the adaptive
elastic net faces practical problems where a maximum likelihood
estimate (MLE), which is usually proposed as an initial weight, is
simply infeasible, and, hence, the adaptive elastic net is no longer
applicable. Zou and Zhang [31] proposed using the elastic net
estimates as an initial weight in adaptive elastic net; however,
using this weight may not be preferable for three reasons: First, it
is well known that gene selection by elastic net can be inconsistent
[31,32]. In other words, this initial weight is biased in selecting
genes. Second, elastic net exhibits difficulties when a group of
genes is nearly linearly dependent, because it does not take into
account the correlation structure among genes [33]. Last, the
elastic net does not perform well when the pairwise correlations
between genes are not extremely high; El Anbari and Mkhadri [34]
stated that if the absolute correlation between genes is slightly
less than 0.95, the elastic net may be slightly less reliable.

In this study, a new initial weight inside ℓ1�norm regulariza-
tion in adaptive elastic regularized logistic regression is proposed,
which is defined as the ratio of the standard error of the ridge
regression estimator to the ridge regression estimator. The main
objective behind this new initial weight is to adjust the ℓ1�norm
regularization in regularized logistic regression by improving the
gene selection consistency while still maintaining the grouping
effects. To evaluate the effectiveness of the new initial weight, we
applied three DNA microarray datasets of cancer classification.
Moreover, a comparison is made with other regularization terms
and initial weights.

The rest of this paper is arranged as follows: Section 2 displays
the regularized logistic regression, the adaptive regularized logis-
tic regression, and the proposed method. While Section 3 covers
the real data application results. Finally, the conclusion is covered
by Section 4.
2. Methods

2.1. Regularized logistic regression

Logistic regression is a statistical method to model a binary
classification problem. The regression function has a nonlinear
relation with the linear combination of the genes. In cancer clas-
sification, the response variable of the logistic regression has two
values either 1 for the tumor class or 0 for the normal class.
Assume that we have n observations and p genes. Let yiAf0;1g be
the response variable value for observation i, i¼ 1;2; :::;n and xi ¼
ðxi1; xi2; :::; xinÞT be the ith gene vector of the gene matrix X. Then,
the response variable is related to genes by

πi ¼ pðyi ¼ 1jxiÞ ¼
expðxT

i βÞ
1þexpðxT

i βÞ
; i¼ 1;2; :::;n ð1Þ

where β¼ ðβ0;β1; :::;βpÞT is a p� 1 vector of unknown gene coef-
ficients. The log-likelihood function of the logit transformation of
Eq. (1) is defined as

ℓðβÞ ¼
Xn
i ¼ 1

yi log ðπiÞþð1�yiÞlog ð1�πiÞ
� �

: ð2Þ

Regularized logistic regression adds a nonnegative regulariza-
tion term to the negative log-likelihood function, ℓðβÞ, such that
the size of gene coefficients in high-dimension can be controlled.
Several regularization terms have been discussed in the literature
[23,24,26,35]. The ℓ1�norm regularization, proposed by Tibshir-
ani [36], is one of the popular regularization terms. The ℓ1�norm
regularization performs gene selection and estimation simulta-
neously by constraining the negative log-likelihood function of
gene coefficients. Thus, the RLR is defined as:

RLR¼ �ℓðβÞþλPðβÞ: ð3Þ
The estimation of the vector β is obtained by minimizing Eq. (3)

β̂RLR ¼ argminβ �
Xn
i ¼ 1

yi log ðπiÞþð1�yiÞlog ð1�πi
� �þλ PðβÞ

" #
;

ð4Þ
where λ PðβÞ is the regularization term that regularized the esti-
mates. The penalty term depends on the positive tuning para-
meter, λ, which controls the tradeoff between fitting the data to
the model and the effect of the regularization. In other words, it
controls the amount of shrinkage. For the λ¼ 0, we obtain the MLE
solution. In contrast, for large values of λ the influence of the
regularization term on the coefficient estimate increases. Choosing
the tuning parameter is an important part of the model fitting. If
the focus is on classification, the tuning parameter should find the
right balance between the bias and variance to minimize the
misclassification error. Without loss of generality, it is assumed
that the genes are standardized,

Pn
i ¼ 1 xij ¼ 0 and ðn�1ÞPn

i ¼ 1
x2 ij ¼ 1; 8 jA 1;2; :::; p

� �
. As a result, the intercept β0 is not reg-

ularized. The estimation of the vector β using the LASSO
(ℓ1�norm regularization) is defined as:

β̂LASSO ¼ argminβ �
Xn
i ¼ 1

yi log ðπiÞþð1�yiÞlog ð1�πi
� �þλ

Xp
j ¼ 1

βj

��� ���
2
4

3
5;

ð5Þ
where λ is a tuning parameter. It reduces to the MLE estimator
when λ¼ 0. On the other hand, if λ-1, the regularization term
forces all the gene coefficients to be zero. In practice, the value of λ
is often chosen by a cross-validation procedure. Eq. (5) can be
efficiently solved by the coordinate descent algorithm [37,38].

Elastic net is a regularization method for gene selection, which
is introduced by Zou and Hastie [26] to deal with the first two
drawbacks of LASSO. Elastic net tries to combine the ℓ2�norm



Table 1
The detail information for the used datasets.

Data set # Samples # Genes Classes

Prostate 102 5966 Tumor/Non-tumor
DLBCL 77 7129 DLBCL/FL
Colon 62 2000 Tumor/Normal

Table 2
Evaluation performance (on average) of the methods used according to the testing
dataset over 50 partitions. The number in parenthesis is the standard error.

# Selected genes CA Sen. Sep.

Prostate
Elastic 44(1.13) 90.64(0.51) 90.84(0.38) 90.71(0.37)
AElastic 44(1.07) 91.22(0.47) 90.90(0.37) 91.33(0.36)
AERidge 42(1.03) 90.35(0.49) 90.60(0.37) 90.31(0.35)
AAElastic 48(0.87) 93.04(0.38) 91.52(0.32) 92.80(0.35)

DLBCL
Elastic 54(1.25) 92.35(0.46) 89.20(0.38) 93.64(0.43)
AElastic 55(1.12) 93.84(0.41) 91.07(0.36) 94.27(0.42)
AERidge 49(1.11) 91.90(0.40) 88.83(0.37) 92.68(0.44)
AAElastic 61(1.04) 95.04(0.31) 92.14(0.36) 95.08(0.42)

Colon
Elastic 24(1.17) 93.55(0.91) 91.58(0.70) 95.84(0.73)
AElastic 24(1.08) 94.24(0.90) 91.87(0.61) 96.31(0.65)
AERidge 23(1.09) 91.74(0.66) 90.91(0.57) 93.34(0.63)
AAElastic 28(0.94) 96.40(0.64) 92.21(0.54) 96.91(0.63)
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with ℓ1�norm to deal with the highly correlated genes and to
perform gene selection simultaneously. The RLR using elastic net
penalty is defined by

β̂Elastic ¼ argminβ �
Xn
i ¼ 1

yi log ðπiÞþð1�yiÞlog ð1�πi
� �"

þλ1
Xp
j ¼ 1

βj

��� ���þλ2
Xp
j ¼ 1

βj
2

3
5: ð6Þ

As we observe from Eq. (6), elastic net estimator depends on
two non-negative tuning parameters λ1 and λ2 which leads to
regularized logistic regression solution.

2.2. Adaptive regularized logistic regression

According to Fan and Li [28], LASSO does not attain the oracle
property. This is because LASSO is equally regularizing all the
coefficients, leading the estimation to be biased. To overcome this
drawback, Zou [30] proposed the adaptive LASSO where adaptive
weights are assigned for regularizing different coefficients in the
ℓ1�norm penalty. By assigning the small coefficients with large
weight and the large coefficients with low weight, it could be
possible to reduce the selection bias, and, therefore, it can con-
sistently select the relevant coefficients.

The regularized logistic regression using the adaptive LASSO of
β is defined by:

β̂ALASSO ¼ argminβ �
Xn
i ¼ 1

yi log ðπiÞþð1�yiÞlog ð1�πi
� �"

þλ
Xp
j ¼ 1

wj βj

��� ���
3
5; ð7Þ

where w¼ ðw1; :::;wpÞT is p�1 weight vector and wj ¼ ðj β̂j j Þ� γ ,

where γ40, and β̂ is a root n-consistent initial value, which means
that it converges to the true estimate β with Opðn�1=2Þ.

In a similar way to LASSO, the elastic net does not enjoy the
oracle property even though it performs much better in classifi-
cation accuracy [31,32]. Additionally, Zou and Zhang [31] pointed
out that the adaptive LASSO outperforms LASSO in terms of
achieving the oracle property, even though the grouping effect
problem for adaptive LASSO remains. As a result, the adaptive
elastic net was introduced by Zou and Zhang [31] and Ghosh [32],
which combines the ℓ2�norm regularization with the adaptive
LASSO. The improved regularization method, adaptive elastic net,
outperforms adaptive LASSO in terms of gene selection con-
sistency and grouping effect simultaneously. For fixed λ2, the
regularized logistic regression using the adaptive elastic net
(AElastic) of β is defined by:

β̂
�
AElastic ¼ argminβ

�
Xn
i ¼ 1

y�i log ðπiÞþð1�y�i Þlogð1�πiÞ
� �

þλ1
Xp
j ¼ 1

wj βj

��� ���þλ2
Xp
j ¼ 1

β2
j

2
666664

3
777775; ð8Þ

where y� ¼ y
0

� �
ðnþpÞ�1

is the augmented vector [26], and wj ¼

ðj β̂j j Þ�γ ; j¼ 1;2; :::; p is the adaptive weight based on the initial

estimator β̂ for a positive constant γ.

2.3. The proposed method

In cancer classification, genes exhibit certain natural grouping
structures; for example, gene expression profiles may be grouped
according to their pathways, and it is often preferable that a group
of genes are either kept or eliminated from the classification
together. Furthermore, the regularization method that selects the
correct subset of genes with probability tending to one is desired.
The adaptive elastic net was successfully applied for gene selection
in cancer classification [35,39,40].

Choosing the initial weight is crucial in the adaptive elastic net.
Ghosh [32] studied the grouping effect in the adaptive elastic net by
using the ordinary least squares (OLS) as the initial weight in low-
dimension data. In logistic regression, MLE instead of OLS was
proposed as an initial weight. In high-dimensional cancer classifi-
cation, however, using MLE is simply infeasible and hence the
adaptive elastic net is no longer applicable. Zou and Zhang [31], on
the other hand, proposed using the elastic net as an initial weight
either in low-dimensional data or high-dimensional data. Generally,
the elastic net estimator is inconsistent in itself. In other words, this
initial weight is biased in selecting genes. In addition, the elastic net
performs well when the pairwise correlations between variables
are very high. El Anbari and Mkhadri [34] stated that if the absolute
correlation between genes is less than 0.95, the elastic net may be
slightly less reliable. Moreover, the elastic net does not take into
account the correlation structure among genes [33].

From these aforementioned drawbacks, using the elastic net
estimator in adaptive elastic regularized logistic regression in
high-dimensional cancer classification may not be preferable. The
ratio of the standard error of the ridge regression estimator to the
ridge regression estimator is proposed as the initial weight in the
adaptive elastic net. According to the nature of the ℓ2�norm, the
ridge penalty tries to force the estimated coefficients of highly
correlated genes to be close to each other. In particular, this
property in the elastic net may help to select or omit the highly
correlated genes together if their coefficients are close to each
other. However, this property loses the capability for estimating
the coefficients of highly correlated genes with different magni-
tudes, especially with different signs [41]. The advantage of using
the standard error of the ridge estimator sβ̂Ridge

is to adjust the

regularized logistic regression using the adaptive elastic net
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(AAElastic) when using ridge regression estimates or elastic net
estimates as an initial weight. As a result, AAElastic is able to
improve genes selection consistently and maintain the grouping
Table 3
Two-way ANOVA for area under the curve over 50 partitions.

Source df SS MS F p-value

Methods 3 0.10563 0.03521 53.83805 0.00000
Datasets 2 0.12015 0.06007 91.86491 0.00000
Error 594 0.38847 0.00065
Total 599 0.61426

Table 4
P-value of Duncan's multiple range test for area under the curve.

Elastic AElastic AERidge AAElastic

Elastic 0.034 0.027 0.001
AElastic 0.013 0.012
AERidge 0.007
AAElastic
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Fig. 1. The 11 most frequently selected
effects simultaneously. Cule and De Iorio [42] proposed a proce-
dure to calculate the sβ̂Ridge

depending on principal component

analysis.
Let β̂Ridge ¼ ðβ̂1ðRidgeÞ; :::; β̂pðRidgeÞÞT be the vector of ridge regres-

sion estimate, sβ̂Ridge
¼ ðs1ðβ̂RidgeÞ

; :::; spðβ̂RidgeÞ
ÞT be the vector of the

standard error of the ridge regression, then wRatio ¼
ðw1ðratioÞ; :::;wpðratioÞÞT be the ratio weight vector wherewj

¼ ðsjðβ̂RidgeÞ
=j β̂jðRidgeÞ j Þ� γ ; j¼ 1;2; :::;p. Furthermore, let xj

�� ¼ x�
j=

wRatio;j; j ¼ 1;2; :::; p, then, the regularized logistic regression using
AAElastic is defined as:

β̂
��

AAElastic ¼ argminβ

�
Xn
i ¼ 1

y�i log ðπiÞþð1�y�i Þlnð1�πiÞ
� �

þλ1
Xp
j ¼ 1

wRatio;j βj

��� ���þλ2
Xp
j ¼ 1

βj
2

2
666664

3
777775: ð9Þ

Eq. (9) can be effectively solved by the coordinate descent
method in glmnet package [38]. After solving Eq. (9), the true
vector estimator β̂ is calculated as:

β̂AAElastic ¼ ð1þλ2Þβ̂
��

AAElastic=wRatio;j; j¼ 1;2; :::; p: ð10Þ
A
A
E
lastic

A
E
lastic

A
E
R
idge

E
lastic

17 x3649 x3749 x4365 x4525 x4666
 genes

genes from the prostate dataset.
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In order to prove that our proposed method has the oracle
property, the theoretical results were covered in the Supplemen-
tary file.

Theorem 1 (Oracle property). : Suppose that A¼ j : βja0
n o

and

Âðλ1; λ2Þ ¼ j : β̂AAElasticðλ1; λ2Þa0
n o

. Under the regularity conditions

(R1) – (R6), the adjusted adaptive elastic net (AAElastic) has the
oracle property by satisfying the following:

1. Consistency in variable selection: lim
n-1

pðÂðλ1;λ2Þ ¼ AÞ ¼ 1

2. Asymptotic normality: ηT ð1þλ2ÞΣ � 1
A

2þλ2

ffiffiffiffiffiffiffi
ΣA

p
β̂AAElasticðλ1; λ2Þ �Nð0;σ2Þ,

where η is a vector of norm 1, and ΣA ¼ XT
AXA.

2.4. Tuning parameter selection

For practical applications, one has to decide the values of the
tuning parameters. Classically, cross-validation (CV) has been
widely used. However, it is computationally intensive for AAElas-
tic, simply because there are three tuning parameters λ1, λ2 and γ.
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Fig. 2. The 23 most frequently selecte
For simplicity, γ ¼ 1 was used for the real data application. The λ2
is typically assumed to take values from a range between 0 and
100. For each λ2, the coordinate descent algorithm produces the
entire solution path. Then the optimal pair of ðλ1; λ2Þ is obtained
using k-fold CV.
3. DNA microarray datasets application

To evaluate our proposed method, AAElastic, in the field of
cancer classification, three publicly well-known binary cancer
classification datasets were used. The first was the prostate cancer
dataset published by [43]. It consisted of 102 samples of 52
prostate tumor samples and 50 non-tumor tissues, where each
sample has 12600 genes. According to Yang et al. [44], a subset of
5966 genes was adapted in the classification by setting the
intensity thresholds at 100–16000 units, then filtering out the
genes with either max/min r5 or max–min r50.

The second was the diffuse large B-cell lymphoma (DLBCL)
dataset published by [45]. The DLBCL dataset consisted of the gene
A
A
E
lastic

A
E
lastic

A
E
R
idge

E
lastic

x5100 x5233 x555 x613 x6179 x6575 x699 x7102 x7127 x7129 x87

 genes

d genes from the DLBCL dataset.
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expression values of 77 samples that were measured by high-
density oligonucleotide microarrays of the two most prevalent
adult lymphoid malignancies, which comprised 58 samples of
diffuse large B-cell lymphomas (DLBCL) and 19 samples of folli-
cular lymphoma (FL). Each sample contained 7129 gene expression
values.

The last was the colon cancer dataset published by [46]. It
contained gene expression levels of 40 tumor and 22 normal colon
tissues for 6500 human genes obtained with an Affymetrix oli-
gonucleotide array. A subset of 2000 genes with the highest
minimal intensity across the samples was used. The detailed
information of these datasets is summarized in Table 1.
3.1. Performance evaluation criteria

In order to evaluate the performance of our proposed AAElastic
method and to compare it with the Elastic, AElastic, and AERidge,
three evaluation criteria were used depending on the testing
dataset:
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Fig. 3. The 16 most frequently selecte
Classification accuracy (%) (CA)

Classification accuracy¼ TPþTN
TPþFPþFNþTN

� 100% ð11Þ

Sensitivity (%) (Sen.)

Sensitivity¼ TP
TPþFN

� 100% ð12Þ

Specificity (%) (Spe.)

Specificity¼ FN
FPþTN

� 100% ð13Þ

where TP is the number of true positive, FP is the number of false
positive, TN is the number of true negative, and FN is the number
of false negative. Furthermore, we also performed a two-way
analysis of variance (ANOVA), to show the statistical difference
in the area under the curve (AUC) of the methods in the training
dataset.
A
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x493 x504 x625 x66 x675 x765 x802 x83
 genes

d genes from the colon dataset.
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3.2. Application results

In order to enable a fair comparison, typically, each dataset was
randomly partitioned into a training dataset, which comprised 70%
of the samples, and a test dataset, which consisted of 30% of the
samples. The partition repeated 50 times for each of the datasets. In
order to obtain the best value of the pair ðλ1;λ2Þ, the 10-fold CV was
employed using the training dataset. All the applications were
conducted in R using the glmnet package. The average number of
selected genes, the average classification accuracy, the average
sensitivity, and the average specificity are presented in Table 2.

As can be seen from Table 2, AAElastic selected more genes than
the other three methods for all the datasets. In DLBCL, for instance,
AAElastic selected 61 genes compared to 54, 55, and 49 genes for
Elastic, AElastic, and the AERidge, respectively. Importantly, AAE-
lastic had the potential to select more genes than the other three
methods, indicating that most of these additionally selected genes
were probably not highly correlated.

In terms of classification accuracy, AAElastic achieved a max-
imum accuracy of 93.04%, 95.04% and 96.40% for prostate, DLBCL,
and colon datasets, respectively. Furthermore, it is clear from the
results that AAElastic outperformed the AERidge in terms of
classification accuracy for all datasets. This improvement in clas-
sification accuracy is mainly due to the AAElastic ability in taking
into account the standard error of the ridge regression. Moreover,
AAElastic slightly improved the classification accuracy compared
to AElastic. The improvements were 2.00%, 1.27%, and 2.29% for the
prostate, DLBCL, and colon datasets.

It can also be seen from Table 2 that AAElastic has the best results
in terms of the sensitivity and specificity. AAElastic has the largest
sensitivity of 91.52%, 92.14%, and 92.21% for the prostate, DLBCL, and
colon datasets, respectively. This indicated that AAElastic significantly
succeeded in identifying the patients who in fact have the cancer
with a probability of 0.915, 0.921, and 0.922, respectively.
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Fig. 4. The correlation matrix among the most freq
On the other hand, the results for the specificity represent the
probability of an adaptive regularized logistic regression method
in identifying the patients who are normal. In terms of the spe-
cificity, AAElastic significantly outperformed the AElastic, AERidge,
and Elastic for all datasets. In the prostate cancer dataset, for
example, AAElastic has the largest probability of 0.928 in identi-
fying the normal patients compared to 0.913, 0.903, and 0.907 for
AElastic, AERidge, and Elastic, respectively.

To further highlight the classification stability for the proposed
method, the AAElastic seeks to prove that it can classify high-
dimensional cancer data with a high degree of accuracy compared
to the other three methods used. Depending on the training dataset,
a two-way ANOVA was used to check whether the AAElastic,
AElastic, AERidge, and the Elastic were statistically significant, and if
there was any significant difference between the three datasets
used in terms of AUC. Table 3 reports the two-way ANOVA results.
From Table 3, the results showed statistically significant differences
between the AAElastic and the three other methods used in terms
of AUC. In addition, we can see that the prostate, DLBCL, and colon
datasets had different area under the curve values.

Furthermore, Duncan's multiple range test was used to obtain
more detailed information about the differences between the
AAElastic and the three other methods used. Table 4 lists the p-
value of each compared pair of methods. It is apparent from
Table 4 that the AAElastic showed statistical differences compared
to the AElastic, AERidge, and Elastic in terms of AUC.

Besides classification accuracy, gene selection consistency is
another aspect associated with adaptive regularized logistic regres-
sion. To measure the consistency of gene selection, Figs. 1–3 display
the frequency of the top selected genes by the AAElastic, AElastic,
AERidge, and the Elastic for prostate, DLBCL, and colon datasets,
respectively.

As we can see from Fig. 1, only 11 genes were frequently selected
by all methods. It is clearly seen that AAElastic showed more con-
sistency in selecting the top genes. For example, it successfully
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1x3
64
9
x3
74
9
x4
36
5
x4
66
6
x4
52
5

749

x4365

x4666

x4525

0.34

0.09

0.08

0.21

−0.33

0.1

1

−0.09

−0.27

−0.17

−0.34

0.04

−0.31

−0.08

1

−0.64

−0.15

−0.01

−0.26

0.47

−0.32

−0.55

−0.02

1

0.4

−0.07

−0.1

0.01

−0.07

−0.06

0.02

0

−0.15

1

0.57

0.21

0.3

0.4

−0.26

0.41

0.32

−0.1

−0.48

0.06

1

uently selected genes of the prostate dataset.



Z.Y. Algamal, M.H. Lee / Computers in Biology and Medicine 67 (2015) 136–145 143
selected the gene index (name) �1074 (H.sapiens cDNA), �1490 (H.
sapiens ABC), �205 (H.sapiens mRNA for RET), �3617 (H.sapiens
GSTA4 mRNA), and �4525 (hepatoma mRNA for serine protease
hepsin) with probability equal to 1, while the other three methods
Fig. 5. The correlation matrix among the most fre
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Fig. 6. The correlation matrix among the most fr
only selected �1074 and �205 with a probability equal to 1. By
looking at the correlation among the 11 top selected genes from Fig. 4,
the correlation between �205 and �4525 was 0.568, which is not
very high, but AAElastic selected these two genes together with 100%.
quently selected genes of the DLBCL dataset.
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Compared to the AElastic and AERidge, they selected these genes with
a percentage of 74% and 62%, respectively. Hence, the ability of
AAElastic in selected correlated genes with no high correlation can be
inferred.

Similar to the prostate dataset, AAElastic provided consistent
gene selection for the DLBCL dataset. Among the top 23 frequently
selected genes (Fig. 2), six genes: �1373 (Macrophage migration
inhibitory factor (MIF)), �1818 (heat shock 60 kDa protein 1
(chaperonin)), �4028 (lactate dehydrogenase A), �4116 (ALDOA
Aldolase A), �438 (T-COMPLEX PROTEIN 1), and �6179 (enolase
1, (alpha)), frequently appeared together in all the methods. It is
apparent that AAElastic consistently selected them with a prob-
ability of 0.96 compared to 0.84, 0.78, and 0.78 of AElastic, AER-
idge, and Elastic, respectively. By checking the correlation matrix
from Fig. 5, we can observe that the correlations among these six
genes range between 0.53 and 0.78. This could be the reason why
the AAElastic selected these six genes together more frequently
compared to the other three methods.

Again, from Fig. 4, we can see that the AAElastic is more con-
sistent than the other three methods. It selected genes �1772
(Homo sapiens), �249 (Human desmin gene, complete cds),
�493 (MYOSIN HEAVY CHAIN, NOUMUSCLE), �66 (HUMAN), and
�765 (SMOOTH MUSCLE) together with a percentage of 100%.
However, the AAElastic was selected �83 (Human mRNA) less
than AElastic, AERidge, and Elastic, where �83 achieved correla-
tion with the range between 0.53 and 0.75 with some selected
genes (Fig. 6). In contrast, AAElastic selected gene x66 with a
percentage of 100%, while both AElastic and Elastic failed to
selected it, although gene �66 has a correlation equal to 0.52,
0.51, and 0.65 with �493, �1432 (H.sapiens mRNA for p cad-
herin), and �249, respectively.

Overall, it is obvious that the microarray real datasets results
demonstrated the use of AAElastic in terms of classification
accuracy for both the training and testing datasets, sensitivity, and
specificity. Additionally, it outperformed the AElastic, AERidge, and
Elastic in terms of gene selection consistency. Furthermore, it is
clear from the application results that for the values of the pair-
wise correlations, AAElastic dominates the other three methods
via grouped selection.
4. Conclusion

Cancer classification is one of the most important applications
in gene expression data. However, due to the high-dimensionality
problem of genes, many computational methods have failed to
identify a small subset of important genes. To tackle both esti-
mating the gene coefficients and performing gene selection
simultaneously, adaptive regularized logistic regression was suc-
cessfully applied in high-dimensional cancer classification. In this
research, we proposed AAElastic for consistent gene selection and
encouraging the grouping effect simultaneously in high-
dimensional cancer classification. From the results, which were
based on three microarray real datasets, it was proved that AAE-
lastic was competitive, effective, and yielded positive results in
terms of (a) classification accuracy, sensitivity, and specificity, and
(b) consistency in gene selection. Furthermore, it is clear from the
application results that for the values of the pairwise correlations,
AAElastic dominates the other three methods via grouped selec-
tion. Therefore, we can conclude the effectiveness of the proposed
AAElastic method in practice.

Summary

A proposed penalized method as a tool for gene selection,
adjusted adaptive regularized logistic regression (AAElastic), is
employed in high-dimensional cancer classification. AAElastic can
perform consistency selection and deal with grouping effects
simultaneously. Compared to other commonly used regularization
methods, the results show that not only does AAElastic obtain the
best classification ability by consistency selection, but also by
encouraging the grouping effects in selecting more correlated genes.
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