PREPARATION OF Mg-DOPED TiO₂ NANOPARTICLES FOR PHOTOCATALYTIC DEGRADATION OF SOME ORGANIC POLLUTANTS

MASOUD GIAHI^{a*}, DEEPAK PATHANIA^b, SHILPI AGARWAL^c, GOMAA A. M. ALI^{d,e}, KWOK FENG CHONG^e, VINOD KUMAR GUPTA^{c*}

ABSTRACT. In this study, the sol-gel method was used to prepare Mg-doped TiO₂ nanoparticles from titanium tetraisopropoxide and magnesium sulfate as the dopant precursors. Mg-doped TiO₂ shows the formation of anatase phase with polyhedral and spherical particles with an average size of 25-30 nm. X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and photoluminescence were used to characterize the prepared material. The photocatalytic degradation performance of rhodamine B, nonylphenol ethoxylates, pseudoephedrine hydrochloride, and nicotine on Mg-doped TiO₂ was studied under UV irradiation. The photocatalytic degradation shows that 98.92, 98.00, 98.00 and 97.95% of rhodamine B, nonylphenol ethoxylates, pseudoephedrine hydrochloride, and nicotine was decomposed by Mg-doped TiO₂, respectively.

Keywords: Mg-doped TiO₂; Organic pollutants; Photocatalytic degradation; Photoluminescence; Sol-gel

^a Islamic Azad University, Department of Chemistry, Faculty of Science, Lahijan Branch, Lahijan, Iran

^b Central University of Jammu, Department of Environmental Sciences, Samba, Jammu and Kashmir-181143, India

^c Center of Excellence for Advanced Materials Research, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

d Al-Azhar University, Faculty of Science, Chemistry Department, Assiut, 71524, Egypt

^e Universiti Malaysia Pahang, Faculty of Industrial Sciences & Technology, Gambang, 26300 Kuantan, Malaysia

^{*} Corresponding authors: m.giahi@liau.ac.ir, giahi_m@yahoo.com and vinodfcy@gmail.com