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In high-dimensional quantitative structure–activity relationship (QSAR) studies, identifying relevant molecular de-
scriptors is a major goal. In this study, a proposed penalized method is used as a tool for molecular descriptors se-
lection. The method, called adjusted adaptive least absolute shrinkage and selection operator (LASSO) (AALASSO), is
employed to study the high-dimensional QSAR prediction of the anticancer potency of a series of imidazo[4,5-b]pyr-
idine derivatives. This proposed penalized method can perform consistency selection and deal with grouping effects
simultaneously. Compared with other commonly used penalized methods, such as LASSO and adaptive LASSO with
different initial weights, the results show that AALASSO obtains the best predictive ability not only by consistency
selection but also by encouraging grouping effects in selecting more correlated molecular descriptors. Hence, we
conclude that AALASSO is a reliable penalized method in the field of high-dimensional QSAR studies. Copyright ©
2015 John Wiley & Sons, Ltd.
Additional supporting information may be found in the online version of this article at the publisher’s web site.
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1. INTRODUCTION

Cancer is a term that refers to uncontrolled cellular division,
growth, and spread of abnormal cells. It can occur in all body
parts. Cancer cells can attack the neighboring undamaged parts
of the body and spread to affect other organs [1]. Cancer is a dis-
ease that threatens human lives and causes the second highest
rate of death globally [2–4]. Although there is continuous prog-
ress in the development of cancer treatment, the challenge to
develop successful anticancer agents remains [5]. A new method
to treat cancer is to use anticancer drugs to act against existing
proteins in the proliferation of cancer cells. Aurora kinase, a fam-
ily of serine/threonine, is a group of kinases that is responsible
for regulating the cell cycle [1]. There are three kinds of Aurora
kinases; namely, Aurora A, B, and C, which play distinct roles in
mitosis regulation [6]. Aurora A is one type of the isoforms of
Aurora kinase enzymes and has a catalytic effect during mitosis [1].
According to previous studies, Aurora A has attracted atten-

tion in the oncology field because it is involved in a wide range
of cancers, such as colorectal, prostate, ovarian, breast, and gli-
oma [7]. Several Aurora kinase inhibitors have been identified
as excellent antitumor inhibitors. Recently, it has been reported
that a series of imidazo[4,5-b]pyridine derivatives possess excel-
lent potencies as orally bioavailable Aurora A inhibitors [7,8].
Quantitative structure–activity relationship (QSAR) study has

become of great importance in computational chemistry and
biochemistry. The principle of QSAR is to model several biologi-
cal activities over a collection of chemical compounds in terms
of their structural properties [9]. Consequently, QSAR is a mathe-
matical model that can be used to predict the biological activity
of new compounds. Analysis of multiple linear regression (MLR)

is one of the most important tools for constructing the QSAR
model. It is used for analyzing the relationship between several
predictor variables and the response variable. In the area of
QSAR modeling, chemical compounds are often treated as
observations, molecular descriptors are treated as predictor var-
iables, and the response variable is represented by biological
activities such as IC50. Typically, a good QSAR model should
possess high predictability and be easily interpretive [10].

The trend today is toward more observations with an even
larger number of variables. In chemometrics, there is an example
where molecular descriptor generation tools have the capability
of producing thousands of molecular descriptors. For instance,
commercial software, known as DRAGON 6, can calculate 4885
molecular descriptors [10,11]. The data collected on individual
compounds are molecular descriptors, so that a single com-
pound has dimensions in thousands, while there are less than
hundreds of compounds available for study. A problem of high
dimensionality in QSAR modeling where the number of molecu-
lar descriptors, p, exceeds the number of compounds, n, is one of
the new challenges facing researchers because conventional
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statistical methods, such as MLR, are neither applicable nor suit-
able [12]. The statistical issues associated with modeling high-
dimensional QSAR using MLR include model overfitting and
multicollinearity [13].

Molecular descriptor elimination for the highly correlated de-
scriptors is often used by numerous researchers in chemometrics
[1,14] in order to avoid multicollinearity, and, at the same time,
to reduce dimensionality. However, it may not provide a satisfac-
tory solution if the molecular descriptors dropped from the QSAR
model have significant explanatory power relative to the biolog-
ical activities; that is, omitting molecular descriptors to reduce
multicollinearity may damage the predictive power of the QSAR
model [15].

Dimensionality reduction and variable selection methods are
an attractive way in high-dimensional QSAR studies. The aim of
these methods is to select an optimal subset of those molecular
descriptors that contain relevant information, and thereby
to improve QSAR modeling. This should be observed in terms
of predictive performance (by decreasing the effect of
multicollinearity) and in interpretability (to prevent overfitting).
Principal component analysis and partial least squares have
gained attention in this area as dimension reduction methods
[16]. They are used to alleviate the effect of multicollinearity
and to prevent overfitting by reducing the dimension size. How-
ever, these methods lack the ability to interpret the results
[17,18]. Traditional variable selection methods and classical
model selection criteria, such as backward elimination, forward
selection, stepwise selection, Akaike information criterion, and
Bayesian information criterion, fail and, computationally, become
more expensive in such high-dimensional problems [19,20].

Recently, an attractive framework for penalized regression
methods has been adapted and gained popularity among statis-
ticians as a key for performing variable selection and model esti-
mation in high-dimensional data simultaneously. These methods
impose a penalty term to be added to the residual sum of
squares (RSS). The advantage behind the penalty term is to
control the complexity of the model and provide criterion
for variable selection, by shrinking the size of the coefficients
toward zero. Some penalties simply alleviate the effect of
multicollinearity, such as ℓ2-norm penalty, which is used in ridge
regression (RR) [21], while others try to prevent overfitting by
reducing the dimension size, such as ℓ1-norm penalty, which is
used in least absolute shrinkage and selection operator (LASSO)
[22]. The amount of the penalty term is the trade-off between
the variance and bias of the selected model. A small amount
leads to select more variables with little bias, but with high
variance. Conversely, a large amount leads to select few variables
with higher bias, but with less variance. Therefore, a good choice
for the amount of the penalty term will improve the prediction
accuracy and make an easily interpretable model.

Least absolute shrinkage and selection operator has shown
success in many situations; however, it has three shortcomings.
Firstly, it cannot select more variables than the number of obser-
vations. Secondly, when there is a group of correlated descrip-
tors (grouping effects), LASSO randomly tries to select one or a
few of the correlated descriptors [23–25]. Lastly, LASSO does
not enjoy the oracle properties, which refer to the probability
of selecting the right set of descriptors (with nonzero coeffi-
cients) converged to one, and that the estimators of the nonzero
coefficients are asymptotically normal with the same means and
covariances as if the zero coefficients are known in advance
[26,27]. The main objective of this paper is to propose adjusting

the adaptive LASSO (ALASSO) by improving the consistency
selection and grouping effects. The proposed method has been
carried out to establish a reliable QSAR between the IC50 values
of imidazo[4,5-b]pyridine derivatives and the selected molecular
descriptors.

2. MATERIALS AND METHODS

2.1. Dataset

The chemical structures and biological activities (IC50) of 65
imidazo[4,5-b]pyridine derivatives, which are used as anticancer
compounds, were selected from the literature [1,7,28,29] and
shown in Figure S1 and Table S1 (Supporting information). The
logarithmic scale of the IC50 values, pIC50 =�log(IC50), was used
in QSAR modeling as a response variable. All the compounds
were randomly split into two subsets, a training set of 45 com-
pounds (70%), which was used to select the tuning parameters,
and thereby to do variable selection and a test set of 20 com-
pounds (30%), which was employed to evaluate the prediction
ability of the QSAR model.

2.2. Molecular descriptors

The molecular structures of the 65 compounds were drawn using
CHEM3D software. The molecular structures were optimized using
the molecular mechanics (MM2) method and then by a molecular
orbital package (MOPAC) module in CHEM3D software. DRAGON

software (version 6.0) was used to generate 4885 molecular de-
scriptors including all 29 blocks based on the optimized molecu-
lar structures [11]. To include consistent and useful molecular
descriptors, preprocessing steps were carried out as follows: First,
those that have constant value for all compounds were excluded
from the QSAR study. Then, molecular descriptors in which 60%
of their values were zeros were removed. Last, those that have
zero values for all compounds were discarded. In total, 2540
descriptors remained for evaluating the QSAR model.

2.3. High-dimensional QSAR model

In QSAR studies, the MLR has been commonly used to link the
biological activities as a response variable to the molecular de-
scriptors as predictor variables for data analysis. The resulting
ordinary least squares (OLS) method has a closed form, which
is easy to compute. However, OLS fails when the number of mo-
lecular descriptors, p, is greater than the number of compounds,
n, because the design data matrix X has more columns than rows
and has multicollinearity between molecular descriptors; there-
fore, XTX is singular [12,30]. Variable selection using penalized
methods plays a vital role in statistical modeling with high-
dimensional QSAR data. It aims to select only a subset of impor-
tant descriptors from a large number of molecular descriptors,
and thereby to improve the performance of QSAR models in
terms of obtaining higher prediction accuracy of the model
and easy interpretation. Penalized regression methods provide
an estimate QSAR model that has lower prediction error than
MLR using OLS, in situations where OLS can be applied.
The reduction in the prediction error using penalized regres-

sion, which is measured by mean-squared error, is achieved
through a variance–bias trade-off: As the complexity of an MLR
increases by including more molecular descriptors in the model,
the variance increases and the bias simultaneously decreases.
Including more molecular descriptors allows the QSAR model
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to adapt to more complicated relationships in the data. However,
a model with too many molecular descriptors may overfit the
QSAR model. Such overfitting leads to a QSAR model that may
not describe future compounds well. Depending on the type of
penalty term used, penalized regression can alleviate the prob-
lems of multicollinearity and can also produce sparse QSAR
models (with small numbers of molecular descriptors) that are
consequently easier to interpret scientifically.
The RR proposed by Hoerl and Kennard [21] is one of the most

used penalized methods as a remedy for the multicollinearity
problem in statistics. RR shrinks the molecular descriptor coeffi-
cients toward zero by adding a ℓ2-norm penalty to the RSS, but
never equals zero. Hence, the variances of the molecular descrip-
tor estimators are reduced, which leads to better properties in
both estimation and prediction. However, the RR suffers from
some limitations. Particularly in high-dimensional QSAR, it does
not have the capability to perform variable selection and, there-
fore, does not give an easily interpretable model. LASSO, intro-
duced by Tibshirani [22], is another frequently used penalized
method. LASSO imposes the ℓ1-norm penalty to the RSS. Because
of the ℓ1-norm property, LASSO can perform variable selection
by assigning some molecular descriptor coefficients to zero.
Despite the advantage of LASSO, it has some shortcomings. First,
it cannot select more molecular descriptors than the number of
compounds. Second, when there is a group of correlated descrip-
tors, LASSO arbitrarily selects one or a few correlated descriptors
[23–25]. Last, LASSO does not enjoy the oracle properties, which
refer to the probability of selecting the right set of molecular
descriptors (with nonzero coefficients) converged to one and that
the estimators of the nonzero coefficients are asymptotically
normal with the same means and covariances as if the zero coef-
ficients are known in advance [26,27].
The classical MLR model for QSAR studies is given by

y ¼ Xβ þ ε (1)

where y= (y1,…, yn)
T is a vector of size n×1 of the biological

activities, X= (x1,…, xp) is a n× p design matrix of p molecular
descriptors, β = (β1,…, βp)

T is a p× 1 vector of unknown molecu-
lar descriptor coefficients, and ε is a vector of size n× 1 of inde-
pendent and identically distributed random variables with
mean 0 and variance σ2. The usual estimation procedure for
the β is OLS by minimization of the RSS with respect to β:

β̂OLS ¼ argminβ y� Xβð ÞT y� Xβð Þ (2)

Then the OLS estimator is obtained by solving Equation (2)
and is defined as

β̂OLS ¼ XTX
� ��1

XTy (3)

Penalization methods for the MLR model, which is called
penalized ordinary least squares, are based on penalized RSS,
and the estimation of the vector β is obtained by minimizing
penalized RSS:

β̂POLS ¼ argminβ y� Xβð ÞT y� Xβð Þ þ λ J βð Þ
n o

(4)

The penalty term λ J(β) depends on the positive tuning param-
eter λ, which controls the trade-off between fitting the data to

the model and the effect of the penalty. In other words, it
controls the amount of shrinkage. For the λ=0, we obtain the
OLS solution. In contrast, for large values of λ, the influence of
the penalty term on the coefficient estimates increases. Choos-
ing the tuning parameter is an important part of the model
fitting. If focusing on prediction, the tuning parameter should
find the right balance between bias and variance to minimize
prediction error. Without loss of generality, it is assumed that
the molecular descriptors are standardized, ∑ni¼1xij ¼ 0 and

n�1ð Þ∑ni¼1x
2
ij ¼ 1; ∀j∈ 1; 2;…; pf g , and the y is centered,

∑ni¼1yi ¼ 0. As a result, the intercept β0 is not penalized.
Assuming the penalized ordinary least squares in Equation (4),

the LASSO estimator of β is defined by

β̂LASSO ¼ argminβ y� Xβð ÞT y� Xβð Þ þ λ ∑
p

j¼1
βj
�� ��� �

(5)

where λ ≥ 0 is a tuning parameter. LASSO continuously shrinks
the molecular descriptor coefficients toward 0 as λ increases,
and some molecular descriptor coefficients are shrunk exactly
to 0. Shrinkage often improves prediction accuracy and helps
to select irrelevant molecular descriptors. LASSO can be effi-
ciently solved by several methods, such as the least angle regres-
sion algorithm [31] and the coordinate descent algorithm [32].

2.4. Adaptive LASSO

According to the language of Fan and Li [27], a good penalty
term estimator must satisfy three properties: unbiasedness,
sparsity, and continuity. Unbiasedness means the resulting esti-
mator has no over-penalization for large parameters to avoid
unnecessary modeling biases. Sparsity is another property that
an estimator enjoys. In other words, the resulting estimator
automatically sets insignificant parameters to zero. Lastly, conti-
nuity is the third property, meaning that the resulting estimator
is continuous in data in order to avoid instability in model
prediction.

One of the main reasons for LASSO not to be consistent, that
is, lacking the oracle property [27,33,34], is that it equally penal-
izes all the regression coefficients, which over-penalizes the irrel-
evant predictor variables leading it to be a biased estimator. To
alleviate this drawback, Zou [26] proposed the ALASSO in which
adaptive weights are used for penalizing different coefficients in
the ℓ1-norm penalty. The basic idea behind ALASSO is that by
assigning a higher weight to the small coefficients and lower
weight to the large coefficients, it is possible to reduce the selec-
tion bias; therefore, it can consistently select the model. Further-
more, the ALASSO solution is continuous from its definition,
which enables it to enjoy oracle properties. The ALASSO estima-
tor of β is defined by

β̂ALASSO ¼ argminβ y� Xβð ÞT y� Xβð Þ þ λ ∑
p

j¼1
wj βj
�� ��� �

(6)

where w= (w1,…,wp)
T is p× 1 data-driven weight vector. It

depends on
ffiffiffi
n

p
-consistent initial values of β̂ and wj ¼

abs β̂ j

� 	h i�γ
, where γ is a positive constant and is usually set to

equal 1.
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2.5. Adjusted adaptive LASSO

AdaptiveLASSOoriginallyusedOLSestimatesas initialweight [26].
This is no longer valid in high-dimensional data. Several
researchers used LASSO estimates as an alternative initial
weight [19]. However, using the LASSO estimator in ALASSO
when p> n may not be preferable for three reasons. First, the
LASSO estimator is inconsistent in itself. In other words, this ini-
tial weight is biased in selection variables. Second, it does not
take into account the weights for all the variables in any im-
plantation, which means that some variables will be selected
and the others will be set to zero. Last, when there is a group
of correlated variables, LASSO fails to select the grouped vari-
ables together.

To overcome these limitations, the ratio of the standard er-
ror of the RR estimator to the RR estimator was proposed as
an initial weight in ALASSO. According to the nature of the
ℓ2-norm, the ridge penalty tries to force the estimated coeffi-
cients of highly correlated predictor variables to be close to
each other. However, this property loses the capability of esti-
mating coefficients of highly correlated predictor variables
with different magnitudes, especially with different signs [24].
The advantage of using the standard error of the ridge estima-
tor sβ̂Ridge

is to adjust ALASSO when using RR estimates as an

initial value. Cule and De Iorio [35] proposed a procedure to
calculate the sβ̂Ridge

depending on the principal component

analysis.

Let β̂Ridge ¼ β̂1 Ridgeð Þ;…; β̂p Ridgeð Þ
� 	T

be the vector of RR esti-

mate, sβ̂Ridge
¼ ðs

1ðβ̂RidgeÞ
;…; s

pðβ̂Ridge Þ
ÞT be the vector of the standard

error of the RR, and wRatio= (w1(ratio),…, wp(ratio))
T be the ratio

weight vector where wj ¼ sj β̂Ridgeð Þ=abs β̂ j Ridgeð Þ
� 	h i�γ

; j ¼
1; 2;…; p. For simplicity, we set γ=1. Then a coordinate descent
method can be used to solve the adjusted ALASSO (AALASSO).
The computation details are given in Algorithm 1.

2.6. Evaluation criteria

The four methods were evaluated and validated to test the pre-
dictive ability of high-dimensional QSAR study of anticancer po-
tency of imidazo[4,5-b]pyridine derivatives. Depending on the
training data, two statistical criteria were used: the mean-
squared error of the training set (MSEtrain) and the leave-one-
out internal validation (Q2

int) defined by

MSEtrain ¼

Xntrain
i¼1

yi;train � ŷ i;train
� 	2

ntrain
(7)

and

Q2
int ¼ 1�

Xntrain
i¼1

yi;train � ŷ i;train
� 	2

Xntrain
i¼1

yi;train � y
� 	2

2
66664

3
77775 (8)

respectively.
Furthermore, the test dataset was used to validate the four

methods by computing three criteria: the mean-squared error
of the testing set (MSEtest), the external validation (Q2

ext), and
Pearson correlation between the true pIC50 values and the pre-
dicted pIC50. The higher the value of the Pearson correlation,
the closer the fit of the predicted pIC50. The two former criteria
were defined by

MSEtest ¼

Xntest
i¼1

yi;test � ŷ i;test
� 	2

ntest
(9)

and

Q2
ext ¼ 1�

Xntest
i¼1

yi;test � ŷ i;test
� 	2

Xntest
i¼1

yi;test � ytrain
� 	2

2
66664

3
77775 (10)

respectively, where ntrain and ntest represent the training and
testing sample sizes, the yi,train, yi,test, ŷi,train, and ŷi,test stand for
the pIC50 values of the training set, testing set, and their corre-
sponding predicted pIC50 values, while y and ytrain represent
the mean of the all pIC50 values and the mean of the training
pIC50 values, respectively. For both the internal and external val-
idation criteria, a validation value of greater than 0.5 indicates a
good predictive model [36].

3. RESULTS AND DISCUSSION

In the high-dimensional QSAR prediction of anticancer potency
of imidazo[4,5-b]pyridine derivatives, AALASSO was performed,
and the results were compared with LASSO, ALASSOlasso, and
ALASSOridge in terms of the selected molecular descriptors and
the accuracy of the prediction.

3.1. Molecular descriptors selection

In this study, all 2540 molecular descriptors were given the
chance in QSAR study. In order to select the most informatics
descriptors, the training set was used to select the descriptors
through finding the optimal value for the tuning parameter of
each method. The K-fold cross-validation method was employed
with K=5 to find the optimal values of λ. Table I summarizes the
tuning parameter values and the number of molecular descrip-
tors selected by each of these four methods in the training set.
The names of the selected molecular descriptors and their corre-
sponding coefficient values of the AALASSO, LASSO, ALASSOlasso,

Algorithm 1. The coordinate descent optimization method for
the AALASSO

Step 1: Find wRatio.

Step 2: Define xj
* * = xj/wRatio, j=1, 2,…, p.

Step 3: Solve the LASSO for all λ values,

β̂ **AALASSO ¼ argminβ y� Xβð ÞT y� Xβð Þ þ λ ∑
p

j¼1
wj Ratioð Þ βj

�� ��� �
:

Step 4: Output β̂� j AALASSOð Þ ¼ β̂ j��=wRatio .
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and ALASSOridge are shown in Figure 1. Among the 26 molecular
descriptors selected by AALASSO, 16 descriptors, 12 descriptors,
and 7 descriptors were also selected by LASSO, ALASSOlasso, and
ALASSOridge, respectively. The names and the description of all
the selected molecular descriptors by the four penalized
methods are given in Table S2.
As can be seen from Table I and Figure 1, AALASSO selected

more molecular descriptors than the other three methods. Most
of these selected descriptors were correlated. For example, the

highest correlation among molecular descriptors was 0.997
between RFD and NNRS, which belong to the ring block. These
two correlated descriptors were selected together by AALASSO,
while none of them was selected by any of the other methods.
Furthermore, AALASSO selected four correlated descriptors,
MATS4v, MATS1e, MATS4p, and MATS1s, which belong to the
2D autocorrelations block. However, the MATS1e descriptor,
which yielded medium correlation values with the rest, was not
selected by LASSO, ALASSOlasso, or ALASSOridge, respectively.
Besides, ALASSOlasso only selected the RDF135m descriptor,
and LASSO selected the RDF135m and RDF095m descriptors,
while AALASSO selected four correlated descriptors from the
RDF block, which are RDF095m, RDF110m, RDF135m, and
RDF040i. Again, the AALASSO method succeeded in selecting
more correlated descriptors from the 3D-MoRSE block. It se-
lected Mor03m, Mor11s, Mor16s, and Mor31s, while the LASSO
method only selected Mor11s. On the other hand, it can be
observed that the ALASSOridge failed to select highly correlated
molecular descriptors, although it selected less molecular de-
scriptors compared with the other methods, which may give
easier interpretation. The success of AALASSO in selecting more
correlated molecular descriptors than the other methods, espe-
cially ALASSOridge, is due to its ability to adjust the adaptive

weight wj ¼ 1=abs β̂ j Ridgeð Þ
� 	h i

by sβ̂Ridge
.

Table I. Tuning parameter values and the selected molecu-
lar descriptor numbers for the four methods

λ No. of descriptors
selected

AALASSO 0.073 26
LASSO 0.106 19
ALASSOlasso 0.141 15
ALASSOridge 0.186 12

AALASSO, adjusted adaptive least absolute shrinkage and
selection operator; LASSO, least absolute shrinkage and
selection operator; ALASSO, adaptive least absolute
shrinkage and selection operator.

Figure 1. Selected molecular descriptor coefficients (a) AALASSO, (b) LASSO, (c) ALASSOlasso, and (d) ALASSOridge.
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To further evaluate the performance of the AALASSO ability in
encouraging the selected group of correlated molecular descrip-
tors, all compounds were divided 25 times into training and

Table II. The frequencies of the selected molecular descrip-
tors obtained by the four methods over 25 times

Selected
descriptors

AALASSO LASSO ALASSOlasso ALASSOridge

RFD 23 0 0 0
RCI 23 0 0 0
NNRS 25 24 25 23
IC1 24 23 22 0
SM1_Dz.m. 24 24 25 25
SpMax_B.i. 25 25 25 25
ATSC7e 0 0 0 15
MATS4m 0 0 0 20
MATS4v 25 22 23 22
MATS1e 23 0 0 0
MATS4p 24 21 22 0
MATS1s 25 22 21 22
GATS8m 25 22 23 0
GATS6p 24 21 0 0
P_VSA_LogP_8 0 10 12 14
P_VSA_MR_7 23 13 14 10
SPAN 0 20 22 22
TDB10m 25 21 22 0
RDF095m 24 21 0 0
RDF110m 24 0 0 0
RDF135m 25 25 23 0
RDF040i 23 0 0 0
Mor03m 23 0 0 0
Mor11s 25 23 0 0
Mor16s 24 0 0 0
Mor31s 23 0 0 0
E2p 24 0 0 0
G1s 25 0 0 0
Dm 25 25 25 25
R1i. 25 24 0 0
SssCH2 0 15 14 16

AALASSO, adjusted adaptive least absolute shrinkage and
selection operator; LASSO, least absolute shrinkage and
selection operator; ALASSO, adaptive least absolute
shrinkage and selection operator.

Table III. Training and testing evaluation criteria values for
the four methods

Methods Training set Testing set Pearson
Correlation

MSEtrain Q2
int MSEtest Q2

ext

AALASSO 0.075 0.942 0.150 0.867 0.940
LASSO 0.110 0.915 0.226 0.799 0.909
ALASSOlasso 0.139 0.893 0.267 0.763 0.890
ALASSOridge 0.177 0.865 0.297 0.737 0.880

AALASSO, adjusted adaptive least absolute shrinkage and
selection operator; LASSO, least absolute shrinkage and
selection operator; ALASSO, adaptive least absolute
shrinkage and selection operator.

Table IV. The true and predicted pIC50 values of the training
and testing sets for the four methods

Molecule
no.

True
pIC50

Predicted pIC50

AALASSO LASSO ALASSOlasso ALASSOridge

57 8.000 7.480 7.380 7.280 7.250
24 7.796 7.530 7.503 7.496 7.465
56 7.854 7.750 7.766 7.758 7.718
32 6.558 6.730 6.795 6.862 6.927
14 4.796 4.950 5.008 5.136 5.293
29 6.939 6.938 6.926 6.937 6.940
26 7.284 7.225 7.181 7.127 7.133
51 7.921 7.918 7.833 7.821 7.783
21 7.301 7.282 7.291 7.306 7.289
15 4.538 5.056 5.171 5.249 5.372
2 6.244 5.875 5.863 5.826 5.795
17 5.357 5.447 5.426 5.439 5.462
1 5.367 5.133 5.157 5.211 5.299
53 7.523 7.722 7.731 7.720 7.681
52 8.699 8.286 8.251 8.202 8.119
23 6.287 6.698 6.811 6.883 6.930
11 5.620 5.864 5.877 5.872 5.884
7 4.745 5.322 5.503 5.635 5.750
25 7.092 7.114 7.145 7.150 7.175
34 6.588 6.646 6.785 6.874 6.976
13 5.180 4.928 5.033 5.133 5.238
45 7.495 7.427 7.346 7.319 7.349
64 8.523 8.348 8.191 8.065 7.914
4 6.131 5.967 5.929 5.970 6.044
50 8.222 8.246 8.191 8.093 7.990
44 7.092 7.567 7.611 7.568 7.561
46 8.398 7.828 7.677 7.597 7.542
8 5.046 5.444 5.579 5.610 5.638
18 6.060 6.542 6.64 6.687 6.747
19 7.377 7.293 7.296 7.267 7.220
65 8.000 7.921 7.863 7.797 7.700
27 8.523 8.005 7.852 7.763 7.655
36 7.071 7.175 7.219 7.258 7.271
20 7.260 7.248 7.217 7.229 7.235
37 7.102 6.946 6.937 6.980 6.986
48 7.824 7.666 7.614 7.570 7.534
10 5.155 5.240 5.309 5.401 5.508
47 7.678 7.437 7.418 7.387 7.344
5 5.161 5.347 5.313 5.329 5.401
30 6.928 7.077 7.148 7.179 7.167
61 8.000 8.027 8.059 8.017 7.944
39 8.046 7.707 7.627 7.573 7.536
38 7.260 7.584 7.518 7.486 7.442
9 6.602 6.608 6.550 6.473 6.380
31 7.125 7.198 7.224 7.226 7.178
3test 6.310 5.895 6.054 6.080 6.049
6test 4.699 5.691 5.785 5.851 5.887
12test 5.000 5.145 5.127 5.220 5.370
16test 5.337 5.908 6.226 6.330 6.362
22test 7.276 6.991 7.086 7.147 7.222
28test 6.438 6.549 6.757 6.851 6.921
33test 6.750 6.618 6.500 6.508 6.570
35test 6.678 6.846 6.971 7.005 7.057
40test 8.097 7.914 7.825 7.731 7.664

(Continues)
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testing sets. The performance in terms of the frequency of the
selected descriptors for each method is reported in Table II. It
is seen that AALASSO gave consistent selection and succeeded
in selecting the same correlated descriptors as it selected them
originally with a percentage equal to 92%. The correctly selected
descriptor percentages of LASSO, ALASSOlasso, and ALASSOridge,
on the other hand, were 40%, 48%, and 40%, respectively.

3.2. Evaluation of AALASSO

Training and testing dataset were used to measure the predic-
tive accuracy of the AALASSO, and the results were compared
with LASSO, ALASSOlasso, and ALASSOridge. The results are re-
ported in Table III. It can be seen that the MSEtrain of the
AALASSO was about 31.81%, 46.04%, and 57.62% lower than
that of LASSO, ALASSOlasso, and ALASSOridge, respectively. More-
over, the prediction performance in the training set using Q2

int of
the AALASSO was 0.942, which was much better than 0.915,
0.893, and 0.893 obtained by the LASSO, ALASSOlasso, and
ALASSOridge, respectively, which indicated the better predictive
ability of the AALASSO than the other three methods.

Depending on the test set, AALASSO reduced the MSEtest
significantly in comparison with the other three methods. The

Table IV. (Continued)

Molecule
no.

True
pIC50

Predicted pIC50

AALASSO LASSO ALASSOlasso ALASSOridge

41test 7.398 7.779 7.686 7.620 7.531
42test 6.187 7.094 7.461 7.538 7.594
43test 7.770 7.685 7.684 7.670 7.667
49test 8.301 8.044 7.999 7.941 7.876
54test 8.222 7.916 7.943 7.907 7.846
55test 8.000 8.226 8.307 8.294 8.194
58test 7.260 7.434 7.274 7.146 7.083
59test 7.523 7.401 7.315 7.209 7.198
60test 7.538 7.608 7.456 7.292 7.188
62test 7.824 8.105 8.129 8.114 8.024
63test 8.000 7.867 8.017 8.015 7.903

AALASSO, adjusted adaptive least absolute shrinkage and
selection operator; LASSO, least absolute shrinkage and
selection operator; ALASSO, adaptive least absolute
shrinkage and selection operator.
testThe molecule belongs to test set.

Figure 2. Plot of true versus predicted pIC50 values as obtained from the training and testing sets (a) AALASSO, (b) LASSO, (c) ALASSOlasso, and (d)
ALASSOridge.
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reduction of MSEtest using AALASSO was 34%, 44%, and 50%
compared with LASSO, ALASSOlasso, and ALASSOridge, respec-
tively. Furthermore, it is apparent that the Q2

ext value for
AALASSO was higher than the other three methods, which indi-
cated that AALASSO has greater predictive ability than LASSO,

ALASSOlasso, and ALASSOridge. Moreover, the reliability of
AALASSO was also assessed from its Pearson correlation value.
It ranked the AALASSO above the LASSO, ALASSOlasso, and
ALASSOridge. On the other hand, ALASSOridge generally per-
formed slightly worse than the other three methods in terms
of validation, although it did select less molecular descriptors.
All the predicted pIC50 results for both the training and test-

ing data are listed in Table IV. Figure 2 displays the correlation
between the true values of the pIC50 and the corresponding pre-
dicted values for both the training and the test sets. Figure 2(a)
clearly reveals that the predicted pIC50 values were in good
agreement in comparison with the true values.

3.3. Y-randomization test

Adjusted ALASSO was further validated by applying the Y-
randomization test [37]. This was in order to ensure that the
predictive power of AALASSO was not based on chance. This test
randomly shuffled the biological activity, pIC50, several times and
applied AALASSO each time. After that, the Q2

int was calculated
for each time. If all the obtained Q2

int values were less than the
Q2

int of the constructed AALASSO, then the constructed AALASSO
was not due to chance correlation indicating that the AALASSO
method could lead to an acceptable method using the training

Figure 3. The Q2
int values over 100 times of the Y-randomization test for

AALASSO.

Figure 4. Williams plot of the AD for the training and testing sets (a) AALASSO, (b) LASSO, (c) ALASSOlasso, and (d) ALASSOridge.

Z. Y. Algamal et al.

wileyonlinelibrary.com/journal/cem Copyright © 2015 John Wiley & Sons, Ltd. J. Chemometrics 2015; 29: 547–556

554



dataset. Figure 3 shows the results for the Y-randomization test for
100 times of Q2

int values.
It can be clearly seen from Figure 3 that the Q2

int values were
in the range of 0.050 to 0.308. In comparison with true Q2

int

values of AALASSO (Q2
int = 0.942), these values indicated that

the high-dimensional QSAR prediction of anticancer potency of
imidazo[4,5-b]pyridine derivatives by using proposed AALASSO
were not due to chance correlation or structural dependence
of the training dataset.

3.4. Applicability domain assessment

To further evaluate the ability of AALASSO in generating a reliable
and robust QSAR model, an applicability domain (AD) assessment
was used. According to Gramatica [38], AD is defined as AD is a
theoretical region in chemical space, defined by the model descrip-
tors andmodeled response, and thus by the nature of the chemicals
in the training set, as represented in each model by specific molec-
ular descriptors.
Leverage approach can be used as an AD assessment [38,39].
Figure 4 (Williams plot) depicts the results of the leverage values

against the standardized residuals for each compound for the
AALASSO and the other three methods (the dotted line indicates
the leverage threshold, while the dashed line represents the stan-
dardized residual limits). The influential compound can be detected
when its leverage value is greater than a leverage threshold (h* = 3
(p+1)/n) [39], where p is the number of the selected descriptors in
the final QSARmodel and n represents the number of compounds.
It is easily clear from Figure 4(a) that there are no compounds with a
higher standardized residual than the limit ±3, which can be con-
sidered as biological activity outliers. Also, from Figure 4(b), it is
obvious that only compound number 27 in the training set was
identified as an outlier in the chemical activity, while compound
numbers 46 and 6 of training set and compound number 35 of test
set are considered influential compounds.
In the Williams plot (Figure 4(c)), we can observe that there are

two compounds from the training set, 5 and 11, and from the
testing set, 3 and 49, identified as influential chemical com-
pounds. As demonstrated in Figure 4(d), only compound 7 from
the training set was considered as a chemical activity outlier and
identified as influential compound simultaneously. On the other
hand, compound 2 and compounds 40 and 64, from the training
and testing sets, respectively, were identified as influential chem-
ical compounds. Thus, it is clearly demonstrated that all the
results confirm that the constructed QSAR model by AALASSO
is more reliable and robust compared with LASSO, ALASSOlasso,
and ALASSOridge.
To summarize, it is obvious from Tables II and III, and Figures 2–4

that AALASSO has superior results in terms of evaluation. In addi-
tion, it outperforms the other competitor methods in terms of
both consistency selection and selection of a group of correlated
molecular descriptors. It selected many correlated molecular
descriptors. In comparison, LASSO, ALASSOlasso, and ALASSOridge

were only able to pick a few correlated descriptors. Generally,
our proposed method, AALASSO, achieved better performance,
especially in the selection of molecular descriptors and can be
successfully applied to the high-dimensional QSAR studies.

4. CONCLUSION

A proposed penalized method as a tool for molecular descriptors
selection, AALASSO, was carried out to study the high-dimensional

QSAR of a series of anticancer potency of imidazo[4,5-b]pyridine de-
rivatives. The proposed method was tested on training and testing
sets, and the results showed that AALASSO outperforms LASSO,
ALASSOlasso, and ALASSOridge in terms of consistency selection
and grouping effects. The potential advantage of AALASSO is its
ability to consistently select more correlated molecular descriptors.
To conclude, the prediction accuracy of the high-dimensional QSAR
of the anticancer potency demonstrated the advantage of the
AALASSO and could further be applied in other high-dimensional
QSAR studies.
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