
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/299587823

An Efficient Replication Technique for Hadoop Distributed File System

Article in International Journal of Scientific and Engineering Research · January 2016

CITATIONS

4
READS

1,012

1 author:

Some of the authors of this publication are also working on these related projects:

LocalitySim View project

geseed View project

Mohamed Khafagy

Fayoum University

56 PUBLICATIONS 330 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mohamed Khafagy on 03 April 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/299587823_An_Efficient_Replication_Technique_for_Hadoop_Distributed_File_System?enrichId=rgreq-d3647bce5125b7a417e72bb0739a6fe8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU4NzgyMztBUzozNDY3OTUwMjk4NzY3MzZAMTQ1OTY5Mzc4NjA3Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/299587823_An_Efficient_Replication_Technique_for_Hadoop_Distributed_File_System?enrichId=rgreq-d3647bce5125b7a417e72bb0739a6fe8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU4NzgyMztBUzozNDY3OTUwMjk4NzY3MzZAMTQ1OTY5Mzc4NjA3Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/LocalitySim?enrichId=rgreq-d3647bce5125b7a417e72bb0739a6fe8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU4NzgyMztBUzozNDY3OTUwMjk4NzY3MzZAMTQ1OTY5Mzc4NjA3Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/geseed?enrichId=rgreq-d3647bce5125b7a417e72bb0739a6fe8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU4NzgyMztBUzozNDY3OTUwMjk4NzY3MzZAMTQ1OTY5Mzc4NjA3Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d3647bce5125b7a417e72bb0739a6fe8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU4NzgyMztBUzozNDY3OTUwMjk4NzY3MzZAMTQ1OTY5Mzc4NjA3Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Khafagy-3?enrichId=rgreq-d3647bce5125b7a417e72bb0739a6fe8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU4NzgyMztBUzozNDY3OTUwMjk4NzY3MzZAMTQ1OTY5Mzc4NjA3Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Khafagy-3?enrichId=rgreq-d3647bce5125b7a417e72bb0739a6fe8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU4NzgyMztBUzozNDY3OTUwMjk4NzY3MzZAMTQ1OTY5Mzc4NjA3Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Fayoum_University?enrichId=rgreq-d3647bce5125b7a417e72bb0739a6fe8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU4NzgyMztBUzozNDY3OTUwMjk4NzY3MzZAMTQ1OTY5Mzc4NjA3Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Khafagy-3?enrichId=rgreq-d3647bce5125b7a417e72bb0739a6fe8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU4NzgyMztBUzozNDY3OTUwMjk4NzY3MzZAMTQ1OTY5Mzc4NjA3Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Khafagy-3?enrichId=rgreq-d3647bce5125b7a417e72bb0739a6fe8-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU4NzgyMztBUzozNDY3OTUwMjk4NzY3MzZAMTQ1OTY5Mzc4NjA3Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

An Efficient Replication Technique for Hadoop Distributed File
System

Eman S.Abead
Faculty of Computers and Information

 Cairo University, Egypt
emanabead@gmail.com

Mohamed H. Khafagy
Faculty of Computers and Information

Fayoum University, Egypt
mhk00@fayoum.edu.eg

Fatma A. Omara
Faculty of Computers and Information

Cairo University, Egypt
f.omara@fci-cu.edu.eg

Abstract—The Hadoop Distributed File System (HDFS) is
designed to store, analysis, transfer massive data sets reliably,
and stream it at high bandwidth to the user applications.
HDFS is a variant of the Google File System (GFS). It handles
fault tolerance by using data replication, where each data
block is replicated and stored on multiple DataNodes.
Therefore, the HDFS supports reliability and availability. The
existed implementation of the HDFS in Hadoop performs
replication in a pipelined manner that takes much time for
replication. In this paper, an alternative technique for efficient
replica placement, called Lazy replication technique, has been
proposed. The main principle of this technique is that, the
client allows to write a block to the first DataNode, which will
send acknowledgement directly to the client without waiting of
receiving acknowledgement form other DataNodes. The
proposed technique has been implemented into two versions;
Lazy and Reconfigurable Lazy. The experiment has been
performed to evaluate the performance of the proposed HDFS
replication technique with the default pipelined replication
technique and the existed replication techniques; parallel
(Broadcast) and parallel (Master/Slave) using TestDFSIO
benchmark. According to the experimental results, it is found
that the HDFS write throughput has been improved up to 15%
in the proposed replication technique.

Keywords: Hadoop Distributed File System (HDFS), Pipelined,
Replication factor, NameNode, DataNode, Client.

I. INTRODUCTION

Big Data is a term for massive data set s having large,
more various and complex structure with the d ifficulties of
storing, analyzing and visualizing for more of processes or
results [1]. On the other hands, the need for distributed
computing is growing every day with the increasing of
workstations power and the data sets sizes. On the other
hand, Apache Hadoop meets the challenges of Big D ata by
simplifying the implementation of data intensive and highly
parallel distributed applications. Hadoop has been used
throughout the world by businesses, universities, and other
organizations. On the other hands, it provides a cost-
effective way for storing huge set of data , and allows
analytical tasks to be divided into fragments of work and
distributed over thousands of computers and provides a
cost-effective way for storing huge quantities of data. Also,
it provides a scalable and reliable mechanism for processing
large amounts of data over over a cl uster of commod ity
hardware to process large amount of data. Also, it provides

new analysis techniques that enable sophisticated analytical
processing of multi-structured data [2].

The development and implementation of distributed
system for Big Data applications are considered a challenge
[3, 4]. In data era, an efficient performance from the file
system is urgently needed to store the entire large data that
would be generated through the internet and efficiently
handle huge files. The faster the data transfer means better
utilization of distributed system. In the recent years, the
HDFS becomes the most popular file system for Big Data
Computing due to its availability and fault-tolerance [5].
The HDFS is a file system that is designed for storing very
large files with streaming data access patterns, running on
the clusters of commodity hardware [6]. The HDFS is
considered highly fault-tolerant and is designed to be
deployed on low-cost hardware [7]. Also, it provides high-
throughput access to application data, and it is suitable for
applications that have large data sets [8]. The HDFS
architecture is master/slave. An HDFS cluster consists of a
single NameNode, a master server that manages the file
system namespace and regulates the access to files by the
clients. Also, there are some DataNodes, usually one per
each node in the cluster, which manage the attached storage
to the nodes that they run on. The HDFS exposes a file
system namespace and allows user data to be stored in files.
Internally, a file is split into one or more blocks, and these
blocks are stored in a set of DataNodes [8]. The NameNode
executes file system namespace operations like open, close,
and rename files and directories. Also, It determines the
mapping of blocks to the DataNodes. The DataNodes are
responsible for serving the read and the write requests from
the file system’s clients. Also, the DataNodes perform the
block creation, deletion, and replication across instruction
from the NameNode [7]. According to t he HDFS i n
Hadoop, the HDFS client opens a file for writing where the
NameNode will allocate a block with a unique block ID and
determines a list of DataNodes to host replicas of that block.
The client writes the data block on the first DataNode, and
then the data are pushed to the next DataNode in pipeline
form. A stream of bytes is pushed to the pipeline as a
sequence of pac kets. Acknowledgement of data written on
DataNodes is also received in the pipeline. After all the
replicas are written correctly, the client requests NameNode
to write the next block (see Fig. 1).

International Journal of Scientific & Engineering Research, Volume 7, Issue 1, January-2016
ISSN 2229-5518 254

IJSER © 2016
http://www.ijser.org

IJSER

Fig.1. Writing a File on HDFS using pipelined
replication technique

This kind of pipelined replication scheme affects the
performance of file write operation because of the time
overhead [5]. Hence, a new lazy replica placement
technique has been introduced to improve HDFS write
throughput. According to the lazy technique, HDFS client
writes to first DataNode, which will send Acknowledgement
directly to t he client to request another write operation.
Then, the first DataNode sends a replica of the client block
simultaneously to t wo DataNodes on the list. The
experimental results using TestDFSIO benchmark prove
that, the lazy replication technique can reduce the execution
time and increase the write throughput that provides a better
response time for the HDFS client. According to the
experimental results, it is found that HDFS write operation
throughput falls as file size rises. This is mainly due to the
replication factor, the limitation of the network bandwidth
and file block size. Therefore, the impact of file blocks size
and replication factor on HDFS write performance have also
examined.

The rest of this paper is organized as follows; related
work is described in section II. The Anatomy of HDFS files
writes pipeline and the lazy replication technique have been
discussed in section III. Experimental results are presented
and discussed in section IV. Finally, conclusions and future
works are discussed in Section V.

II. RELATED WORK

The data replication is a hot research topic in the
distributed computing field. There are several techniques
have been proposed to tackle this issue. For instance, DARE
is an adaptive data replication technique for HDFS [9].
According to this technique, probabilistic sampling and a
competitive aging algorithm have been used independently
at each node to determine the number of re plicas and the
location of each replica to be al located to each file and th e
location to each replica. DARE mechanism considers the
advantage of existing the remote data retrievals and selects a
subset of the data that to be inserted into the file system, So
creating a replica without consuming extra network and
computation resources. DiskReduce technique is a
modification of the HDFS that enables asynchronous
encoding of tri ple replicated data and provides RAID-class
redundancy overheads [10]. Also, to i ncrease a cluster's
storage capacity as seen by its users with up to three factors,
DiskReduce can delay encod long enough to deliver the
performance benefits of multiple data copies. ERMS [11]
has provided a dynamic and elastic data replication

technique. Based on the data access patterns and the data
popularity, the data in HDFS could be classified into four
types; hot data, cooled data, cold data and n ormal data.
Because hot data is the popular data, ERMS increases the
number of replica for the hot data and cleans up this extra
replica when t he data cools down. ERMS shows that it
improves the reliability and p erformance of HDFS and
reduce storage overhead. Qingqing Feng.et.al. [12] has
introduced Magicube – a high reliable and low redundancy
storage architecture for cloud computing with only one
replica in the HDFS, and (n, k) algorithm for fault-tolerant.
It satisfies both low space overhead and high reliability
simultaneously. By executing the fault-tolerance process in
the background, Magicube can work well for batch
processing jobs. Patel Neha M. et.al. [5] have proposed a
system that is considered an alternative parallel technique
for efficient replica placement in HDFS to improve
throughput. They proved that HDFS write performance has
been enhanced because the client writes all replicas in
parallel (see Fig. 2).

Fig.2. Writing a File on HDFS using Parallel (Broadcast)

 Narendra M Patel .et.al. [13] has enforced the parallel
manner in HDFS, where after requesting NameNode to
write a file and receive a l ist of DataNodes to host replica,
the client first writes a block to the first DataNode. Once a
block is filled in first DataNode, it creates thread and
request to Dat aNode2 an d DataNode3 for creating
replicas of the desired block in p arallel. Once the block is
written in D ataNode2 and D ataNode3, t hey send an
acknowledgement to first DataNode. After getting
acknowledgement from both Dat aNode2 and DataNode3,
DataNode1 sends an acknowledgement to the client. Finally,
the client sends an ackn owledgement to NameNode that
block is successfully written on three different nodes (see
Fig. 3).

Hong Zhang Patel .et.al. [14] has introduced an
improved HDFS design called SMARTH. SMARTH
utilizes asynchronous multi-pipeline data transfers instead
of a si ngle pipeline stop-and-wait mechanism. SMARTH
records the actual transfer speed of dat a blocks and sends
this information to the NameNode along with periodic
heartbeat messages. The NameNode sorts the DataNodes
according to their past performance and tracks the
information continuously. When a client initiates an upload
request, the NameNode will send it a list of “high
performance” DataNodes that it thinks will return the
highest throughput for the client. By choosing higher
performance DataNodes relative to each client and by taking
advantage of the multi-pipeline design.

International Journal of Scientific & Engineering Research, Volume 7, Issue 1, January-2016
ISSN 2229-5518 255

IJSER © 2016
http://www.ijser.org

IJSER

DFS Client

NameNode

File Namespace
Metadata

6-Packets are
written in

parallel

DataNode1

DataNode2 DataNode3

 Fig.3. Writing a File on HDFS using Parallel (Master/Slave)

Eman.S.Abead . et.al. [15] has introduced a comparative
study of the most common HDFS replication techniques; the
default pipeline, parallel (Broadcast), and parallel
(Master/Slave) technique. They provide the comprehensive
and theoretical analysis of these existed HDFS replication
techniques; The technical specification, features, and
specialization for each technique along with its applications
have been described.

III. THE ANATOMY OF HDFS FILE WRITE PIPELINE
AND PROPOSED REPLICATION TECHNIQUE

An application adds data to th e HDFS b y creating a
new file then writing the data to it. After the file is closed,
the written bytes cannot be modified or removed except that
new data can be added to the file by reopening the file for
append. HDFS implements a single-writer, multiple-reader
model [16]. All HDFS communication protocols are layered
on the top of TCP/IP protocol. A clie nt establishes a
connection to a c onfigurable TCP port on the NameNode
machine. The DataNodes talk to t he NameNode by using
the DataNode Protocol. A Remote Procedure Call (RPC)
abstraction wraps both the Client Protocol and the
DataNode Protocol. According to this design, the
NameNode never initiates any RPCs. Instead, it only
responds to RPC r equests issued by DataNodes or clients
[8]. The client creates the file by calling create() on
DistributedFileSystem, Then DistributedFileSystem makes
an RPC call t o the NameNode to create a new file in th e
filesystem’s namespace, with no blocks associated with it.
The NameNode performs many of checks to make sure the
file doesn’t already exist, and that the client has the
permissions to create the file. If these checks pass, the
NameNode makes a record of the new file.

DFSOutputStream: creates the files from a stream of
bytes. It splits the data into packets; each packet is 64K in
size. A packet is broken into chunks. Chunk is 512 bytes
and has an associated checksum with it, which it writes to
an internal queue, called the data queue.

The DataStreamer streams the packets to the first
DataNode in a pipeline, which stores the packet and
transmit it to the second DataNode in the pipeline.
Similarly, the second DataNode stores the packet and send it
to the third (and last) DataNode in the pipeline.

The ResponseProcessor receives an ac knowledgement
from the DataNodes. When an acknowledgement for a
packet is received from all DataNodes, the Response
Processor removes the similar packet from the ackQueue
[6].
A. HDFS Replica Placement:

The placement of replica is critical issue to HDFS
reliability and performance. Optimizing replica placement
distinguishes HDFS from most other distributed file
systems. The purpose of t he rack-aware replica placement
policy is to improve data reliability, availability, and
network bandwidth utilization. Large HDFS instances run
on the cluster of computers that commonly spread across
many racks. The communication between two nodes in
different racks has to go through switches. Mostly, network
bandwidth between machines in the same rack is greater
than network bandwidth between machines in different
racks. The NameNode identifies the rack id of each
DataNode belongs to it via the process outlined in Hadoop
Rack Awareness. A simple, but the non-optimal policy is to
place replicas on u nique racks. This prevents losing data
when an entire rack fails and allows to use bandwidth from
multiple racks when reading data. This policy evenly
distributes replica in the cluster which makes it easy to load
balance on component failure[17,18]. On the other hand,
this policy increases the cost of writes because a write needs
to transfer blocks to multiple racks.

Hadoop’s default strategy is to place the first replica on
the same node as the client (for clients running outside the
cluster, a node is random selected, although the system tries
not to pick nodes that are too full or too busy). The second
replica is placed on a different rack from the first (off-rack),
selected randomly. The third replica is placed on the same
rack as th e second replica, but a different node chosen at
random. Further replicas are placed in random nodes in the
cluster, although the system tries to avoid placing too many
replicas on the same rack [6].

B. Steps to writing a file in HDFS (Pipeline):
HDFS is designed to store reliably very large files across

machines in the large cluster. It stores each file as a
sequence of blocks; all blocks in a file except the last block
are the same size. The blocks of the file are re plicated for
fault tolerance. The block size and replication factor are
configurable per file. An application can specify the number
of a replica of a file. The replication factor can be
determined at the file creation time and can b e changed
later. Files in HDFS are w rite-once and have one writer
strictly at any time.

The steps of writing a file using pipelined replication
technique are (see Fig. 3) [16]:

1) HDFS client sends a request to the NameNode to
create a new file in the filesystem’s namespace.

2) NameNode returns a list of DataNodes to store data
block according to replication factor.

3) HDFS client’s file data is first divided into blocks
with default size and then splits into packets. The
list of DataNodes forms a pipeline. Supposing the
replication factor is three, so there are three nodes
in the pipeline.

International Journal of Scientific & Engineering Research, Volume 7, Issue 1, January-2016
ISSN 2229-5518 256

IJSER © 2016
http://www.ijser.org

IJSER

4) The packets are sent to the DataNode1 in the
pipeline, to be st ored and forwarded to the
DataNode2 in the pipeline. In the same way, the
DataNode2 stores the packet and forwards it to the
DataNode3 in the pipeline.

5) Acknowledged by all DataNodes also are received
in the pipeline.

6) When the client has fi nished writing data, it calls
close() on the stream.This action flushes all the
remaining packets to DataNode pipeline and waits
for acknowledgments before contacting the
NameNode to signal that file is complete.

 C. Hadoop DFS file writes operation using Lazy
Replication Technique:

This section illustrates the components of the lazy
replication technique. The lazy technique has improved
HDFS write with respect to the execution time and
Throughput. The basic idea behind the lazy technique is to
enable the clients to request to write a file in fast time. The
high-level overview of the lazy technique and its components
has been presented in Fig.4. According to the lazy technique,
a single block is writ ten on three different DataNodes;
DataNode1, DataNode2 and DataNode3. The steps of
writing a file in the HDFS according to the lazy technique
are as follows:

1) A Client requests NameNode to write a file.
2) The Client first receives a li st of DataNodes to

write and to host replicas of a single block.
3) The Client first writes a block to DataNode1.
4) Once a block is fi lled on DataNode1, DataNode1

sends an acknowledgement to the client. Then, the
client sends an ackn owledgement to NameNode
informing that the block is successfully written on
one node; the client can request for next block to
write.

5) DataNode1 creates a thread and request DataNode2
and DataNode3 to create replicas of the desired
block in parallel.

6) Once, the block is written on DataNode2 and
DataNode3; they send an acknowledgement to
DataNode1.

7) Finally, After getting acknowledgement from both
DataNode2 and DataNode3, DataNode1 sends an
acknowledgement to NameNode to write the block
that is written in the three DataNodes, DataNode1,
DataNode2, and DataNode3, in Metadata. If
DataNode1 fails to receive an acknowledgement
from any of DataNode2 or DataNode3, it resends
the same block to them.

DFS Client

NameNode

File Namespace
Metadata

6-Packets are
written in
parallel

DataNode1

DataNode2 DataNode3

Fig.4. Writing a File on HDFS using Lazy
Replication technique

The main drawback of the lazy technique is the single
failure problem. This could happen when DataNode1 fails.
So, the availability could be affected. The lazy technique
has been modified by reconfiguring the DataNodes to
overcome this problem as follows (see Fig. 5):

1) A Client requests NameNode to write a file.
2) The Client first receives a l ist of DataNodes to

write and to host replicas of a single block.
3) The Client first writes a block to DataNode1 and

DataNode2 in parallel.
4) Once a bloc k is fil led on DataNode1 and

DataNode2, DataNode1 (or DataNode2) sends an
acknowledgement to the client. Then, the client
sends an acknowledgement to NameNode
informing that the block is successfully written on
one node; the client can request for next write
operation.

5) DataNode1 creates a thread and request DataNode3
to create replicas of the desired block in parallel.

6) Once, the block is w ritten on Dat aNode3; it sends
an acknowledgement to DataNode1.

7) Finally, DataNode1 sends an ac knowledgement to
NameNode to write the block that is written in the
three DataNodes, DataNode1, DataNode2, and
DataNode3, in Metadata. If DataNode1 fails to
receive an ackn owledgement from DataNode3, it
resends the same block to it.

Fig.5. Writing a File on HDFS Using The Reconfigured Lazy Replication
Technique

International Journal of Scientific & Engineering Research, Volume 7, Issue 1, January-2016
ISSN 2229-5518 257

IJSER © 2016
http://www.ijser.org

IJSER

Another modification has been done to enhance the
proposed Lazy HDFS replication technique to improve the
availability, and in the same time, reduce the execution time
and increase write throughput. This has been done by
introducing an extra DataNode (see Fi g. 6). The
enhancement lazy HDFS technique is implemented as
follows:

1) This step as step 1 in both (lazy, configurable)
technique, A Client requests NameNode to write a
file.

2) This step as step 2 in both (lazy, configurable)
technique, The Client first receives a list of
DataNodes to write and to host replicas of a single
block.

3) This step as step 3 in configurable HDFS technique,
The Client first writes a b lock to DataNode1 and
DataNode2 in parallel, which store the packet.

4) Once a block is filled on D ataNode1 and
DataNode2, DataNode1 and DataNode2 send an
acknowledgement to the client. Then, the client
sends an acknowledgement to NameNode
informing that the block is successfully written on
two nodes; the clie nt can request for next write
operation.

5) DataNode1, DataNoe2 creates a thread and request
DataNode3, DataNode4 to create replicas of the
desired block in parallel.

6) Once, the block is written on DataNode3,
DataNode4, it sends an ackn owledgement to
DataNode1, DataNode2.

7) Finally, After getting acknowledgement from
DN3 and DN4, DN1, DN2 sends an
acknowledgement to NN to write in Metadata the
block that is written in four DataNodes. If DN1,
DN2 fails to receive an acknowledgement from
DN3 and DN4, it resends the same block to it.

DFS Client

NameNode

File Namespace
Metadata

6-Packets are
written

7-Ack

DataNode1 DataNode2

DataNode3 DataNode4

6-Packets are
written

7-Ack

 Fig.6. Writing a File on HDFS Using The Enhancement Lazy
Replication Technique

IV. PERFORMANCE EVALUATION

In this section, the performance evaluation of the
proposed Lazy, Lazy Reconfigurable, and enhancement
Lazy techniques with respect to the pipeline, parallel
(Broadcast) and parallel (Master/slave) techniques is
introduced. On the other hands, HDFS write performance is

highly dependent on the hardware, network environment,
load balancer, and the processing time of e ach
NameNode/DataNodes. Also, the performance may vary as
different cluster configuration environment varies.

A. Cluster Configurations.
The proposed lazy HDFS replication technique is

implemented using a private cluster with one NameNode
serves as Metadata storage manager and nine DataNodes
provide both computations as MapR educe clients and data
storage resources, all commodity computers. All nodes are
configured with HCL Intel Core I3 2100, 2.4 GHz processor
with 8GB RAM and 320GB SATA HDD. Each node runs
Ubuntu 14.10 In all experiments, Hadoop framework 1.2.1
and JDK 1.7.0 is used. These nodes locate in three different
racks with Gigabit Ethernet network connecting from
Edureka data center.

B. Evaluation Using TestDFSIO.
The TestDFSIO benchmark is used to evaluate the

impact of the lazy replication technique on HDFS write
throughput. This benchmark is a read and writes a test for
HDFS. It is helpful for tasks such as st ress testing HDFS, to
discover the performance bottlenecks in the network, to
shake out the hardware, OS and Hadoop setup of the cluster
machines (particularly the NameNode and the DataNodes).
TestDFSIO measures average throughput for read, w rite
and append operations. TestDFSIO is an appli cation
available as part of the Hadoop distribution [19].

Fig 7(a,b) represents the expermintal results for HDFS
file write with Replication Factor is three and Block Size is
64MB and with raises of file size from (1,2,3,…,9,10) GB.
According to the experiment results in Fig.7(a), it is found
that approximately 40% reduction in the execution time of
the lazy HDFS replication technique, 10% reduction of the
parallel (Broadcast) replication technique, a nd 6%
reduction of the parallel (Master/Slave) comparing to the
pipelined replication technique.

Fig.7(b) represents the results of the throughput of the
existed parallel (Broadcast), parallel(Master/Slave), Default
pipelined and the lazy techniques According to the results it
has observed that the throughput improvement is around
15% for the lazy HDFS replication technique, 10% for the
parallel (Broadcast) replication technique, and 7% for the
parallel (Master/Slave) replication technique comparing to
the default pipelined replication. From the results, it is also
examined that the throughput is decreased with increasing
the file size in the three techniques.
 Some factors would affect the HDFS write performance.
For example, a file will have fewer blocks if the block size
is larger. This can potentially make it possible for the client
to read/write more data without connecting with the
NameNode, and it al so reduces the metadata size of t he
NameNode, and NameNode workload. This can be
necessary for large file systems. On the other hand, larger of
the file size, larger of the number of blocks, will increase the
total number of the requests from the HDFS clients to
NameNode that leads to increase the network overhead.
 Actually, HDFS provides flexibility to change default
block size using dfs.block.size property. The experiment
results are tested with block size=128.

International Journal of Scientific & Engineering Research, Volume 7, Issue 1, January-2016
ISSN 2229-5518 258

IJSER © 2016
http://www.ijser.org

IJSER

Fig. 7(a) TestDFSIO Execution Time (sec)

Fig. 7(b) TestDFSIO Throughput (MB/sec)

Fig.7(c) illustrates the performance of the four
techniques by considering large block size (i.e., 128 MB).
The improvement in file write throughput is approximately
15% to 20% in the lazy technique, approximately 10% to
12% in parallel (Broadcast), and approximately 7% to 9% in
parallel (Master/Slave) technique comparing to the pipeline
technique. On the other hand, replication factor and the
limitation of the network bandwidth also affect the file write
throughput.

Fig. 7(c) TestDFSIO Throughput (MB/sec) –Different block size

The performance evaluation of the proposed
reconfigurable lazt replication technique with respect to the
default pipeline, parallel (Broadcast), and parallel (Master/
Slave) replications techniques is depicated in Fig. 8(a,b) for
HDFS file write with replication factor is th ree and block
size is 64MB and with raises of fi le size from
(1,2,3,…,9,10) GB. According to the experiment results in
Fig.8(a), it is found that approximately 25% reduction in the
execution time of the reconfigured lazy HDFS replication
technique, 10% reduction of the parallel (Broadcast)
replication technique, and 6% reduction of the parallel
(Master/Slave) comparing to t he pipelined replication
technique

According to the results in Fig.8(b),. it has observed
that the throughput improvement is around 12% for the
reconfigured lazy HDFS replication technique, 10% for the
parallel (Broadcast) replication technique, and 7% for the
parallel (Master/Slave) replication technique comparing to
the default pipelined replication. From the results, it is also
examined that the throughput is decreased with increasing
the file size in the four techniques.

Fig.8(c) illustrates the performance of the four
techniques by considering large blo ck size. The
improvement in file write throughput is approximately 12%
to 15% in the reconfigured lazy technique, approximately
10% to 12% in parallel (Broadcast) and approximately 7%
to 9% in parallel (Master/Slave) technique comparing to the
pipeline technique.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Ex
ec

ut
io

n
Ti

m
e

HDFS file write operation Execution Time (sec)
R.F=3 : Block Size=64 MB

Pipeline

Parallel(Broadcas
t)

Parallel(Master/
Slave)

The Lazy

File size (GB)

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
(M

B/
se

c)

File Size (GB)

HDFS Write operation Throughput (MB/sec)
R.F=3 : Block Size=64 MB

Pipeline

Parallel(Broa
dcast)
Parallel(Mas
ter/Slave)
The lazy

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
(M

B/
Se

c)

File Size(GB)

HDFS Write operation Throughput (MB/sec)
R.F=3 : Block Size=128 MB

Pipeline

Parallel(Broadc
ast)

Parallel(M/S)

The lazy

International Journal of Scientific & Engineering Research, Volume 7, Issue 1, January-2016
ISSN 2229-5518 259

IJSER © 2016
http://www.ijser.org

IJSER

Fig. 8(a) TestDFSIO Execution Time (sec)

Fig. 8(b) TestDFSIO Throughput (MB/sec)

Fig. 8(c) TestDFSIO Throughput (MB/sec) –Different block size

V. CONCLUSIONS AND FUTURE WORK

Data replication is a t echnique commonly used to
improve data availability and writing throughput in the
distributed file systems. In HDFS, each block is replicated
on different nodes.

In this paper, the design and implementation of an
alternative replication technique called lazy replication has
been introduced for efficient replica placement on HDFS
that can increase write throughput. The lazy technique has
been implemented using three DataNodes with two
configurations

Another modification has been introduced to the proposed
lazy technique by introducing extra DataNode as a b ackup
for the DatNode1 to improve the availability without
affecting the write throughput and the execution time.

References
[1] S. Sagiroglu and D. Sinanc, "Big data: A review," in

Collaboration Technologies and Systems (CTS), 2013
International Conference on, 2013, pp. 42-47.

[2] B. Lublinsky, K. T. Smith, and A. Yakubovich,
Professional Hadoop Solutions: John Wiley & Sons,
2013.

[3] R. Akerkar, Big data computing: CRC Press, 2013.

[4] A. Gkoulalas-Divanis and A. Labbi, Large-Scale Data
Analytics: Springer, 2014.

[5] M. Patel Neha, M. Patel Narendra, M. I. Hasan, D.
Shah Parth, and M. Patel Mayur, "Improving HDFS
write performance using efficient replica placement," in
Confluence The Next Generation Information
Technology Summit (Confluence), 2014 5th
International Conference-, 2014, pp. 36-39.

[6] T. White, Hadoop: The definitive guide: " O'Reilly
Media, Inc.", 2012.

[7] (Access: 27/3/2015 1:00 AM). HDFS Architecture
Available:
http://hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-hdfs/HdfsDesign.html

[8] D. Borthakur, "The Hadoop distributed file system:
Architecture and design," Hadoop Project Website, vol.
11, p. 21, 2007.

[9] C. L. Abad, Y. Lu, and R. H. Campbell, "DARE:
Adaptive data replication for efficient cluster
scheduling," in Cluster Computing (CLUSTER), 2011
IEEE International Conference on, 2011, pp. 159-168.

[10] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson,
"DiskReduce: RAID for data-intensive scalable
computing," in Proceedings of the 4th Annual
Workshop on Petascale Data Storage, 2009, pp. 6-10.

[11] Z. Cheng, Z. Luan, Y. Meng, Y. Xu, D. Qian, A. Roy,
N. Zhang, and G. Guan, "E rms: an e lastic replication
management system for hdfs," in Cluster Computing
Workshops (CLUSTER WORKSHOPS), 2012 IEEE
International Conference on, 2012, pp. 32-40.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Ex
ec

ut
io

n
Ti

m
e

HDFS file write operation Execution Time (sec)
R.F=3 : Block Size=64 MB

Pipeline

Parallel(Broadca
st)

Parallel(Master/
Slave)

The
Reconfigured
Lazy

File size (GB)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
(M

B/
se

c)

File Size(GB)

HDFS Write operation Throughput (MB/sec)
R.F=3 : Block Size=64 MB

Pipeline

Parallel(Broadca
st)

Parallel(Master/
Slave)

The
Enhancement
Lazy

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
(M

B/
Se

c)

Fille Size(GB)

HDFS Write operation Throughput (MB/sec)
R.F=3 : Block Size=128 MB

Pipeline

Parallel(Broad
cast)

Parallel(M/S)

The
reconfigured
lazy

International Journal of Scientific & Engineering Research, Volume 7, Issue 1, January-2016
ISSN 2229-5518 260

IJSER © 2016
http://www.ijser.org

IJSER

[12] Q. Feng, J. Han, Y. Ga o, and D. Meng, "Magicube:
High Reliability and Low Redundancy Storage
Architecture for Cloud Computing," in Networking,
Architecture and Storage (NAS), 2012 IEEE 7th
International Conference on, 2012, pp. 89-93.

[13] N. M. Patel, N. M. Patel, M. I. Hasan, and M. M. Patel,
"Improving Data Transfer Rate and Throughput of
HDFS using Efficient Replica Placement,"
International Journal of Computer Applications, vol.
86, 2014.

[14] H. Zhang, L. Wang, and H. Huang, "SMARTH:
Enabling Multi-pipeline Data Transfer in HDFS," in
Parallel Processing (ICPP), 2014 43rd International
Conference on, 2014, pp. 30-39.

[15] Eman.S.Abead, Mohamed H. Khafagy, and Fatma A.
Omara, "A Comparative Study of HDFS Replication
Approaches,", the International Journal of IT and
Engineering Issues, Vol. 03, Issue-08, August 2015,
pp 4-11

 [16] K. Shvachko, H. Kuang, S. Radia, and R. Chansler,
"The Hadoop distributed file system," in Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on, 2010, pp. 1-10.

[17] Ebada Sarhan, Atif Ghalwash, Mohamed Khafagy,"
Queue weighting load-balancing technique for database
replication in dynamic content web sites ", Proceedings
of the 9th WSEAS International Conference on
APPLIED COMPUTER SCIENCE, 2009, Pp. 50-55

[18] Ahmed M W ahdan Hesham A. Hefny, Mohamed
Helmy Khafagy," Comparative Study Load Balance
Algorithms for Map Reduce Environment ",
International Journal of Applied Information Systems,
volume 7, issue 11, 2014, Pp. 41-50

[19] M. G. Noll. (APR 9TH, 2011). Benchmarking and
Stress Testing an Hadoop Cluster With TeraSort,
TestDFSIO & Co. Available: http://www.michael-
noll.com/blog/2011/04/09/benchmarking-and-stress-
testing-an-hadoop-cluster-with-terasort-testdfsio-
nnbench-mrbench/

International Journal of Scientific & Engineering Research, Volume 7, Issue 1, January-2016
ISSN 2229-5518 261

IJSER © 2016
http://www.ijser.org

IJSER

View publication statsView publication stats

https://www.researchgate.net/publication/299587823

