Republic of lraq Ministry of Higher Education and Scientific Research Mustansiriyah University

College of Science

Application of the Characteristic-Free Resolution of Weyl Module to the Lascoux Resolution in the Case of Partition (8,7,3)

A Thesis
Submitted to the Council of College of Science, Mustansiriyah University as a Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Mathematics

By
Niran Sabah Jasim

Supervised by
Assistant Professor Dr.Haytham R. Hassan

(「) (「)
ا

($($ عَلَّهُ
سورة|لعلق
اكَية ()

صقتة اللّه العظليم

((بُبي رمه (لis)
إلى الشععة التي تضيء لي اللدنيا حناناً ...
إلى صاحبة القلب اللدافيء ...
إلى روحي ونور عيوني ...
حخظك لي رببيوأطال بعمرك
(أكي (لنالية)
إلى ينبوع الحنان الثني لاينضب ...
إلى أرض العطاء التي لا تجدبـ ...
الؤورود الز/هية في يبستان دنيتي ...
 (أفرآلي و ؤُمي)

نيران

Acknowledgements

Praise be to Allah the Lord of the worlds and peace and blessings be upon our Prophet Mohammed and his pure progeny for completing this thesis

I would like to express my gratitude to my supervisor Assistant Professor Dr. Haytham R. Hassan for his supervision and advice throughout the preparation this thesis.

I would like also to thank all members of the Department of Mathematic, College of Science, Mustansiriyah University and Department of Mathematic, College of Education for Pure Science / Ibn Al-Haitham / University of Baghdad for allowing me to complete my study.

My deepest sincere thanks go to my family and my friends for their support and encouragement during the period of my study.

List of Symbols

Symbol	Meaning
m	Multiplication map
Δ	Diagonalization map
η	Unit map
ε	Counit map
\mathcal{F}	Free module
$\mathcal{D}_{n} \mathcal{F}$	The divided power algebra of the field \mathcal{F}
$\Lambda_{n}(\mathcal{F})$	The exterior algebra of the field \mathcal{F}
$S_{n}(\mathcal{F})$	The symmetric algebra of the field \mathcal{F}
$G L_{n}(\mathcal{F})$	General linear group of degree n over the field \mathcal{F}
$d_{\alpha}(\mathcal{F})$	Schur map
$d^{\prime}{ }_{\alpha}(\mathcal{F})$	Weyl map
$\mathcal{L}_{\alpha}(\mathcal{F})$	Schur module
$\mathcal{K}_{\alpha}(\mathcal{F})$	Weyl module
$\square_{\lambda / \mu}$	Box map
$\mathrm{Tab}_{\lambda / \mu}$	The set of all tableaux of the shape λ / μ
\mathcal{P}^{+}	Positive place alphabet
\mathcal{P}^{-}	Negative place alphabet
\square	End of the proof

Abstract

Let \mathcal{R} be a commutative ring with identity, \mathcal{F} be a free \mathcal{R}-module and $\mathcal{D}_{n} \mathcal{F}$ be the divided power algebra of degree n.

By employing the technicality of Bar-complex and letter place algebra with Capelli identities, Buchsbaum surveys the resolution of Weyl module and shows that the large class of $G L_{n}(\mathcal{F})$-modules is defined among all the Weyl modules $\mathcal{K}_{\lambda / \mu}(\mathcal{F})$; where λ / μ is the skew-partition and $\mathcal{K}_{\lambda / \mu}(\mathcal{F})$ is the image of Weyl $\operatorname{map} d^{\prime}{ }_{\lambda / \mu}(\mathcal{F})$.

In this thesis we discuss an application of the resolution of two-rowed Weyl module in the case of partition $(8,7)$ to find the terms of this resolution and prove its exactness. Also as an application of the resolution of three-rowed Weyl module we find the terms of characteristic-free resolution in the case of partition (8,7,3), the terms of Lascoux complex for the same partition and diagrams of complex of Lascoux also for the same partition. As a generalization to the same techniques used by Buchsbaum we find the reduction from the characteristic-free resolution of Weyl module to characteristic-zero resolution (Lascoux resolution) with using the boundary maps which are used in the characteristic-zero in the case of partition $(8,7,3)$. Eventually, by employing mapping Cone and its diagrams we survey the characteristic-zero resolution (Lascoux resolution) and prove that it is exact without depending on the boundary maps for the same partition.

Contents

The Subject	$\begin{gathered} \text { Page } \\ \text { Number } \end{gathered}$
Introduction	1
Chapter One: Preliminaries	
Introduction	6
1.1 Hopf algebras	6
1.2 Schur functors	12
1.3 Letter place algebra	22
1.4 The differential bar complex	32
Chapter Two: Public outcomes of resolution for Weyl module	
Introduction	35
2.1 Resolution for the two-rowed Weyl module	35
2.2 Resolution for the three-rowed Weyl module	51
Chapter Three: Resolution of Weyl module in the case of partition (8,7,3)	
Introduction	55
3.1 The characteristic-free resolution in the case of partition $(8,7,3)$	55
3.2 Complex of Lascoux in the case of partition (8,7,3)	63
3.3 Reduction from characteristic-free resolution to Lascoux resolution in the case of partition $(8,7,3)$	68
3.4 Characteristic-zero resolution of Weyl module with mapping Cone in the case of partition $(8,7,3)$	162
References	170
Suggestions for future works	173
Published papers	174

Let R be a field of characteristic-zero and \mathcal{F} is an R -vector space of dimension n. The set of all irreducible polynomial representations of general linear group $G L_{n}(\mathcal{F})$ of degree n is described by the Schur module $\left\{\mathcal{L}_{\lambda}(\mathcal{F})\right\}$; where λ runs over all partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$. There are a number of classical formulas that express the formal character of the representation $\mathcal{L}_{\lambda}(\mathcal{F})$ in terms of standard symmetric polynomials. Such formulas are also valid for the more general representation modules $\left\{\mathcal{L}_{\lambda / \mu}(\mathcal{F})\right\}$ associated to skew partition λ / μ; where $\mu \subseteq \lambda$.

The Giambelli's identity $[G]$ and the Jacobi-Trudi identity $[\mathcal{J}-\mathcal{T}]$ formulas are studied in this context which are described in [11] as follows:

$$
\begin{gathered}
{[G]: \delta_{\lambda / \mu}(X)=\operatorname{det}\left(e_{\lambda_{i}-\mu_{j}+j-i}(X)\right)} \\
{[\mathcal{J}-\mathcal{T}]: \delta_{\lambda / \mu}(X)=\operatorname{det}\left(h_{\widetilde{\lambda}_{i}-\widetilde{\mu}_{j}+j-i}(X)\right) ;}
\end{gathered}
$$

where
$X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a set of variables;
$e_{r}(X)$ is the ${ }^{\text {th }}$ elementary symmetric polynomial function defined by

$$
e_{r}(X)=\sum_{1 \leq i_{1}<\cdots<i_{r} \leq n} x_{i_{1}} x_{i_{2}} \ldots x_{i_{r}} ;
$$

$h_{r}(X)$ is the $\mathrm{r}^{\text {th }}$ complete symmetric polynomial function defined by

$$
h_{r}(X)=\sum_{i_{1}+\cdots+i_{n}=r} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{n}^{i_{n}} ;
$$

$\tilde{\lambda} / \tilde{\mu}$ is the skew partition dual to λ / μ;
$\delta_{\lambda / \mu}(X)$ is the formal character of $\left\{\mathcal{L}_{\lambda / \mu}(\mathcal{F})\right\}$.
The classical formulas $[G]$ and $[\mathcal{J}-\mathcal{T}]$ above express the formal character $\mathcal{S}_{\lambda / \mu}(X)$ of $\mathcal{L}_{\lambda / \mu}(\mathcal{F})$ in terms of the formal characters $\mathcal{S}_{(r)}(X)=e_{r}(X)$ of the fundamental representations $\Lambda^{\kappa} \mathcal{F}$ and in term of the formal characters $\mathcal{S}_{\underset{r}{(1, \ldots, 1)}}(X)=h_{r}(X)$ of the fundamental representations $S_{r}(\mathcal{F})$ respectively.

In the Grothendieck ring $\mathcal{K}\left[G L_{n}(\mathcal{F})\right]$ of $G L_{n}(\mathcal{F})$-modules, the above identities can be replaced by

$$
\begin{gathered}
{[G]:\left[\mathcal{L}_{\lambda / \mu}(\mathcal{F})\right]=\operatorname{det}\left(\left[\Lambda^{\lambda_{i}-\mu_{j}+j-i} \mathcal{F}\right]\right)} \\
{[\mathcal{J}-\mathcal{T}]:\left[\mathcal{L}_{\lambda / \mu}(\mathcal{F})\right]=\operatorname{det}\left(\left[\mathcal{S}_{\widetilde{\lambda}_{i}-\widetilde{\mu}_{j}+j-i} \mathcal{F}\right]\right)}
\end{gathered}
$$

The author in [27] translates the expansion of the classical Giambelli determinantal expression $[G]$ into resolution \mathcal{B}. in characteristic-zero of $\mathcal{L}_{\lambda}(\mathcal{F})$.
In particular, the author asserts that the formula $[G]$ may be realized in characteristic-zero as the "Euler-Poincare" characteristic of the complex \mathcal{B}. in the ring $\mathcal{K}\left[G L_{n}(\mathcal{F})\right]$.

The precise definitions of the boundary maps are given in [4]; where it is proved (always in characteristic-zero) that the complex \mathcal{B}. is exact.

To be more explicit using the same notation as in [8], let

$$
\mathcal{M}_{i, j}=\Lambda^{\lambda_{i}-\mu_{j}+j-i} \mathcal{F}
$$

Then, we have:

$$
\begin{aligned}
{\left[\mathcal{L}_{\lambda / \mu}(\mathcal{F})\right] } & =\sum_{\sigma \in S_{k}}(-1)^{\operatorname{sgn} \sigma}\left[\mathcal{M}_{1, \sigma(1)} \otimes \mathcal{M}_{2, \sigma(2)} \otimes \ldots \otimes \mathcal{M}_{k, \sigma(k)}\right] \\
& =\sum_{\ell=0}^{(k)}(-1)^{\ell}\left[\mathcal{B}_{\ell}\right]
\end{aligned}
$$

where
S_{k} is the symmetric group, $\ell=\ell(\sigma)$ is the length of the permutation σ, $\mathcal{B}_{\ell}=\sum_{\ell=\ell(\sigma)} \mathcal{M}_{1, \sigma(1)} \otimes \mathcal{M}_{2, \sigma(2)} \otimes \ldots \otimes \mathcal{M}_{\ell, \sigma(k)}$, and $G L_{n}(\mathcal{F})$-equivariant boundary maps of the complex

$$
\mathcal{B} .: 0 \longrightarrow \mathcal{B}_{\binom{k}{2}} \xrightarrow{\left.\begin{array}{c}
\partial_{(}^{k} \\
2
\end{array}\right)} \ldots \longrightarrow \mathcal{B}_{1} \xrightarrow{\partial_{1}} \mathcal{B}_{0} \longrightarrow \mathcal{L}_{\lambda / \mu}(\mathcal{F}) \longrightarrow 0
$$

are described in [4].

Note that the terms of the resolution \mathcal{B}. of $\mathcal{L}_{\lambda / \mu}(\mathcal{F})$ are direct sums of tensor products of the fundamental representations of $G L_{n}(\mathcal{F})$ and clearly, the exactness of \mathcal{B}. implies the identity $[G]$.

From now on, let \mathcal{F} be a free module of finite rank over a commutative ring \mathcal{R}. In [2] a large class of $G L_{n}(\mathcal{F})$-modules is defined among them, all the coSchure module $\mathcal{K}_{\lambda / \mu}(\mathcal{F})$ (Weyl module). Schure and Weyl modules are universally free and there is a natural map of $\mathcal{K}_{\tilde{\lambda} / \tilde{\mu}}(\mathcal{F})$ into $\mathcal{L}_{\lambda / \mu}(\mathcal{F})$. When \mathcal{R} contains the field of rationales \mathbb{Q} this map is an isomorphism. In particular, the identities $[G]$ and $[\mathcal{J}-\mathcal{T}]$, which hold in general in the ring $\mathcal{K}\left[G L_{n}(\mathcal{F})\right]$ take the following form:

$$
\begin{gathered}
{[G]:\left[\mathcal{L}_{\lambda / \mu}(\mathcal{F})\right]=\operatorname{det}\left(\left[\Lambda^{\lambda_{i}-\mu_{j}+j-i}(\mathcal{F})\right]\right)} \\
{[\mathcal{J}-\mathcal{T}]:\left[\mathcal{K}_{\lambda / \mu}(\mathcal{F})\right]=\operatorname{det}\left(\left[\mathcal{D}_{\lambda_{i}-\mu_{j}+j-i}(\mathcal{F})\right]\right)}
\end{gathered}
$$

where $\mathcal{D}_{r}(\mathcal{F})$ stands for the divided powers of \mathcal{F}.
Notice that, in characteristic-zero since $\mathcal{K}_{\tilde{\lambda} / \widetilde{\mu}}(\mathcal{F}) \xrightarrow{\approx} \mathcal{L}_{\lambda / \mu}(\mathcal{F})$ and $\mathcal{D}_{r}(\mathcal{F}) \approx \mathcal{S}_{r}(\mathcal{F})$, we get the identities $[G]=[\mathcal{J}-\mathcal{T}]$ of the classical case as described before i.e

$$
\left[\mathcal{K}_{\tilde{\lambda} / \widetilde{\mu}}(\mathcal{F})\right]=\operatorname{det}\left(\left[{\widetilde{\tilde{\lambda}_{i}}-\tilde{\mu}_{j}+j-i}^{\left.\mathcal{F}])=\operatorname{det}\left(\left[\mathcal{D}_{\tilde{\lambda}_{i}-\widetilde{\mu}_{j}+j-i} \mathcal{F}\right]\right), ~\right)}\right.\right.
$$

In general, it is not true that the complex \mathcal{B}. exact but it can be enlarged to a complex $\widetilde{\mathcal{B}}$. More precisely $\mathcal{L}_{\lambda / \mu}(\mathcal{F})\left(\mathcal{K}_{\lambda / \mu}(\mathcal{F})\right)$ has a finite resolution $\widetilde{\mathcal{B}}$. whose terms are direct sums of the tensor product of exterior of \mathcal{F}.

The Authors in [3], [4], [5] and [6] have described the resolutions $\widetilde{\mathcal{B}}$. of Weyl and Schure modules by writing down explicit projective resolutions of the two-rowed modules. The existence proof of resolution for the similar problem with an arbitrary number of rows the authors in [7] gave that. While the existence of resolution of Weyl modules whose terms are direct sums of tensor products of
divided powers proved by the authors in [19]. By using the duality between Schur and Weyl module one can also solve Schur modules using tensor products of exterior powers.

It is important to point out that, there was not explicit description of these finite resolutions, except for shapes of length two, and a class of shapes of length three.

Using the letter place algebra notation is to modify the standard kind of maps which is used in the above cited papers to place polarizations operators (derivations). The advantage is to replace the arithmetic Koszul complex by an appropriate Bar complex. It simplifies strongly the description of the terms of the resolution. Also, it is clear that for the two-rowed case it is possible to write a splitting homotopy for the resolution by using the letter place approach and by reformulating the resolutions involved in terms of Bar complex.

In [13] and [15] the authors have studied clearly in details the terms of the resolutions for all shapes in the so called class of "almost skew shapes". This characterization is largely located on the "Bar complex" framework, but a total characterization of the boundary map is still an open problem.

The author in [20] presents the skeleton in the resolution of skew-shapes. Especially the terms of Lascoux resolution can be recovered within the formulas approaching in [15] and [16]. Over and above the application of the outcomes aforesaid above, the author in [18] illustrated that by employing the letter place methods and place polarization in a symmetric way.

The authors in [17] studied the corresponding of Weyl module to the partition $(2,2,2)$, the relationship between the resolution of $\mathcal{K}_{(2,2,2)} \mathcal{F}$ in the characteristic-free module and in the Lascoux mode. By this comparison, the characteristic-free boundary maps are modified to obtain the obvious maps of the Lascoux case.

Haytham R. Hassan generalize the techniques in [17] for the partitions $(3,3,3),(4,4,3)$ in [23] and [25] respectively, also he studied in [24] the resolution of Wely module in the case of two-rowed skew-shape $(\mathrm{p}+\mathrm{t}, \mathrm{q}) /(\mathrm{t}, 0)$ and the complex of Lascoux in partition $(4,4,4)$ in [26]. While the authors Alaa O. Azziz in [9], Nora T. Abdul Razak in [1], Mais M. Mohmmed in [28] and Najah M. Mustafa in [29] used the same technique in [21] and [23] for the partitions (3,3,2), $(6,5,3),(6,6,3)$ and $(7,6,3)$ respectively.

This thesis consists of three chapters. In chapter one, we review some definitions, remarks, theorems and examples to illustrate the concepts Hoph algebra, Schure functors, letter place algebra and differential Bar complex. In chapter two, we exhibit the resolution of two-rowed and three rowed Weyl module and discuss an application of the resolution of two-rowed Weyl module in the case of partition $(8,7)$ and find the terms of this resolution and prove its exactness. In chapter three, we study in detail an application of the resolution of three-rowed Weyl module for the case of the partition $(8,7,3)$ we find respectively the terms of characteristic-free resolution, the terms of Lascoux complex, diagrams of the complex of Lascoux, reduction from the characteristic-free resolution of Weyl module to characteristic-zero resolution (Lascoux resolution) with using the boundary maps which are used in the characteristic-zero. Finally, by employing mapping Cone and its diagrams we survey the characteristic-zero resolution (Lascoux resolution) and prove it to be exact without depending on the boundary maps for the same partition.

Introduction

This chapter consists of four sections, the Hopf algebra with examples illustrated in the first section, while the Schur functors presented in the second section. Some definitions and examples about the letter place algebra exhibit in the third section. Finally the concept differential Bar complex with some definitions and example given in the last section.

1.1 Hopf algebras

Definition (1.1.1): [10]
Given a commutative ring \mathcal{R} with identity, an \mathcal{R}-algebra is an \mathcal{R}-module \mathcal{A} endowed with two \mathcal{R}-morphisms

$$
m_{\mathcal{A}}: \mathcal{A} \otimes_{\mathcal{R}} \mathcal{A} \longrightarrow \mathcal{A} \quad \text { (multiplication) }, u_{\mathcal{A}}: \mathcal{R} \longrightarrow \mathcal{A} \text { (unit) }
$$

such that the following diagrams are commute

Definition (1.1.2): [10]

Given a commutative ring \mathcal{R} with identity, an \mathcal{R}-co-algebra is an \mathcal{R}-module \mathcal{A} endowed with two \mathcal{R}-morphisms

$$
c_{\mathcal{A}}: \mathcal{A} \longrightarrow \mathcal{A} \otimes_{\mathcal{R}} \mathcal{A} \quad \text { (co-multiplication) }, \varepsilon_{\mathcal{A}}: \mathcal{A} \longrightarrow \mathcal{R} \text { (co-unit) }
$$

such that the following diagrams are commute

Definition (1.1.3): [10]

A graded ring is a ring \mathcal{S} together with a set of subgroups $\mathcal{S}_{d}, d \geq 0$ such that $\mathcal{S}=\underset{d \geq 0}{\oplus} \mathcal{S}_{d}$ as an abelian group, and $s t \in \mathcal{S}_{d+e}$ for all $s \in \mathcal{S}_{d}, t \in \mathcal{S}_{e}$.

Definition (1.1.4): [10]

If \mathcal{S} is a graded ring then a graded \mathcal{S}-module is an \mathcal{S}-module \mathcal{M} together with a set of subgroups $\mathcal{M}_{n}, n \in \mathbb{Z}$ such that $\mathcal{M}=\underset{n \in \mathbb{Z}}{\oplus} \mathcal{M}_{n}$ as an abelian group, and $s m \in \mathcal{S}_{n+d}$ for all $s \in \mathcal{S}_{d}, m \in \mathcal{M}_{n}$.

Definition (1.1.5): [21]

Let \mathcal{R} be a commutative ring. A graded \mathcal{R}-algebra is a graded \mathcal{R}-module $\mathcal{M}=\underset{i \geq 0}{\oplus} \mathcal{M}_{i}$ together with a "multiplication" (homogenous)
$m: \mathcal{M} \otimes \mathcal{M} \longrightarrow \mathcal{M} \quad$ and \quad a unit $\eta: \mathcal{R} \longrightarrow \mathcal{M}$,
such that the following diagrams are commute

(the associative law)

(The unitary property)

Definition (1.1.6): [21]

A graded \mathcal{R}-co-algebra is a graded \mathcal{R}-module $\mathcal{N}=\underset{i \geq 0}{\oplus} \mathcal{N}_{i}$ together with "diagonalization" or homogeneous co-multiplication $\Delta: \mathcal{N} \longrightarrow \mathcal{N} \otimes \mathcal{N}$ and a linear map co-unit $\varepsilon: \mathcal{N} \longrightarrow \mathcal{R}$ such that the following diagrams are commute

(The co-associative law)

(The co-unitary property)

Definition (1.1.7): [21]
A graded \mathcal{R}-Hopf algebra is a graded \mathcal{R}-module \mathcal{A} together with a multiplication $m: \mathcal{A} \otimes \mathcal{A} \longrightarrow \mathcal{A}$, co-multiplication $\Delta: \mathcal{A} \longrightarrow \mathcal{A} \otimes \mathcal{A}$ and a unit $\eta: \mathcal{R} \longrightarrow \mathcal{A}$ and a co-unit $\varepsilon: \mathcal{A} \longrightarrow \mathcal{R}$ satisfying these properties:
(1) (\mathcal{A}, m, η) is a graded \mathcal{R}-algebra, $(\mathcal{A}, \Delta, \varepsilon)$ is a graded \mathcal{R}-co-algebra, $\varepsilon: \mathcal{A} \longrightarrow \mathcal{R}$ is a map of \mathcal{R}-algebras, $\eta: \mathcal{R} \longrightarrow \mathcal{A}$ is a map of \mathcal{R}-co-algebras.
(2) The following diagrams are commute

Where $\mathcal{T}: \mathcal{A} \otimes \mathcal{A} \longrightarrow \mathcal{A} \otimes \mathcal{A}$ is the twisting morphism which is defined by

$$
\mathcal{J}(a \otimes b)=(-1)^{i j} b \otimes a, \text { for } a \in \mathcal{A}_{i}, b \in \mathcal{A}_{j},
$$

and $\mathcal{S}: \mathcal{A} \longrightarrow \mathcal{A}$ is \mathcal{R}-linear (the unique "antipode" map).
If the following two diagrams commute, we say that \mathcal{A} is a commutative graded \mathcal{R}-Hopf algebra.

In our work, we will presume that \mathcal{A} is connected (i.e. $\mathcal{A}_{0}=\mathcal{R}$) and for every i, \mathcal{A}_{i} is finitely generated free \mathcal{R}-module.

Now, we exhibit major examples of Hopf algebras.

Example (1.1.8): [2] (The exterior algebra)

The exterior algebra of finitely generated free \mathcal{R}-module \mathcal{F} is the free graded commutative \mathcal{R}-algebra generated by an element of \mathcal{F} in degree one and is denoted by $\Lambda \mathcal{F}=\sum_{r \geq 0} \Lambda^{r} \mathcal{F}$. It is constructed as the quotient $\mathcal{T}(\mathcal{F}) / \mathcal{J}$; where $\mathcal{T}(\mathcal{F})=\sum_{r \geq 0} \mathcal{T}_{r}(\mathcal{F})$ is the tensor algebra on \mathcal{F} and $\mathcal{J}=\sum_{r \geq 0} \mathcal{J}_{r}$ is the two-sided homogeneous ideal of $\mathrm{T}(\mathcal{F})$ generated by elements of the type $x \otimes x$; where $x \in \mathcal{F}$ and the r-th degree component $\Lambda^{r} \mathcal{F}$ is $\mathcal{J}_{r}(\mathcal{F}) / \mathcal{J}_{r}$. Since $\Lambda^{1} \mathcal{F}=\mathcal{F}$ then the canonical projection $\mathcal{T}_{r}(\mathcal{F}) \longrightarrow \Lambda^{r} \mathcal{F}$ can be viewed as the component $\mathcal{F} \otimes \mathcal{F} \otimes \mathcal{F} \otimes \ldots \otimes \mathcal{F} \longrightarrow \Lambda^{r} \mathcal{F}$ of r-fold multiplication in $\Lambda \mathcal{F}$. The diagonal map $\mathcal{F} \longrightarrow \mathcal{F} \otimes \mathcal{F}$ which defined by $x \longrightarrow(x, x)$ induces an \mathcal{R}-algebra map $\Lambda \mathcal{F} \longrightarrow \Lambda(\mathcal{F} \oplus \mathcal{F}) \cong \Lambda \mathcal{F} \otimes \Lambda \mathcal{F}$ which is the co-multiplication Δ of Hopf algebra $\Lambda \mathcal{F}$ with the co-unit being the projection $\Lambda \mathcal{F} \longrightarrow \mathcal{R}$ into degree 0 .

Example (1.1.9): [2] (The symmetric algebra)

The symmetric algebra of finitely generated free \mathcal{R}-module \mathcal{F} is the free graded commutative \mathcal{R}-algebra generated by elements of \mathcal{F} in degree 2 and it is denoted by $\mathcal{S F}=\sum_{r \geq 0} \mathcal{S}_{r} \mathcal{F}$; where we write $\mathcal{S}_{r} \mathcal{F}$ for the elements of degree $2 r$. $\mathcal{S F}$ is constructed as the quotient $\mathcal{T}(\mathcal{F}) / \mathcal{L}$; where \mathcal{L} is the two sided homogeneous ideal of the tensor algebra $\mathcal{T}(\mathcal{F})$ generated by elements of the form $x_{1} \otimes x_{2}-x_{2} \otimes x_{1} ;$ where $x_{1}, x_{2} \in \mathcal{F}$. Since $\mathcal{S}_{1} \mathcal{F}=\mathcal{F}$, then the canonical projection $\mathcal{T}_{r}(\mathcal{F}) \longrightarrow \mathcal{S}_{r} \mathcal{F}$ is the component $\mathcal{F} \otimes \mathcal{F} \otimes \mathcal{F} \otimes \ldots \otimes \mathcal{F} \rightarrow \mathcal{S}_{r} \mathcal{F}$ of r-fold multiplication in $\mathcal{S F}$. The diagonal map $\mathcal{F} \rightarrow \mathcal{F} \oplus \mathcal{F}$ induces an R -algebra map $\mathcal{S F} \longrightarrow \mathcal{S}(\mathcal{F} \oplus \mathcal{F}) \cong \mathcal{S F} \otimes \mathcal{S F}$, which is the co-multiplication of the Hopf algebra SF with co-unit being the projection $\mathcal{S F} \longrightarrow \mathcal{R}$ into degree 0 .

If $x \in \mathcal{F}, \Delta(x)=x \otimes 1+1 \otimes x$ and since Δ is algebra map, then we have $\Delta\left(x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{t}^{\alpha_{t}}\right)=\sum_{0 \leq \beta_{i} \leq \alpha_{i}}\binom{\alpha}{\beta} x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \ldots x_{t}^{\beta_{t}} \otimes x_{1}^{\alpha_{1}-\beta_{1}} x_{2}^{\alpha_{2}-\beta_{2}} \ldots x_{t}^{\alpha_{t}-\beta_{t}} ;$ where $\binom{\alpha}{\beta}=\binom{\alpha_{1}}{\beta_{1}}\binom{\alpha_{2}}{\beta_{2}} \ldots\binom{\alpha_{n}}{\beta_{n}}$ and $\binom{\alpha_{i}}{\beta_{i}}=\frac{\alpha_{i}!}{\beta_{i}!\left(\alpha_{i}-\beta_{i}\right)!}$

Example (1.1.10): [2] (The divided power algebra)

The divided power algebra $\mathcal{D F}=\sum_{i \geq 0} \mathcal{D}_{i} \mathcal{F}$ can be defined as the graded commutative algebra generated by element $x^{(i)}$ in degree $2 i$; where $x \in \mathcal{F}$ and i is a non-negative integer, satisfying the following conditions:
(1) $\mathcal{D}_{0} \mathcal{F}=\mathcal{R}, \quad \mathcal{D}_{1} \mathcal{F}=\mathcal{F}$
(2) $x^{(0)}=1, \quad x^{(1)}=x \quad ; \forall x^{(i)} \in \mathcal{D}_{i}$ and $x \in \mathcal{F}$.
(3) $x^{(p)} x^{(q)}=\binom{p+q}{q} x^{(p+q)} \quad ; \forall x \in \mathcal{F}$.
(4) $(x+y)^{(p)}=\sum_{k=0}^{p} x^{(p-k)} y^{(k)} \quad ; \forall x, y \in \mathcal{F}$.
(5) $(x y)^{(p)}=x^{(p)} y^{(p)} \quad ; \forall x, y \in \mathcal{F}$.
(6) $\left(x^{(p)}\right)^{(q)}=\frac{(p q)!}{q!p^{q!}!} x^{(p q)}$

As with symmetric algebra, we write $\mathcal{D}_{i} \mathcal{F}$ for the elements of degree $2 i$. If $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ is a basis for \mathcal{F} then the set

$$
\left\{\xi_{1}^{\left(\alpha_{1}\right)}, \xi_{2}^{\left(\alpha_{2}\right)}, \ldots, \xi_{n}^{\left(\alpha_{n}\right)} \mid \alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=p\right\},
$$

is the basis for $\mathcal{D}_{\mathcal{P}} \mathcal{F}$ and it is dual to the basis

$$
\left\{x_{1}^{\alpha_{1}}, x_{2}^{\alpha_{2}}, \ldots, x_{n}^{\alpha_{n}} \mid \alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=p\right\},
$$

of $\mathcal{S}_{\mathfrak{p}}\left(\mathcal{F}^{*}\right)$; where $x_{1}, x_{2}, \ldots, x_{n}$ is the basis of \mathcal{F}^{*} dual to $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$.
$\mathcal{D F}$ has a graded \mathcal{R}-Hopf algebra structure as the graded dual of $\mathcal{S}\left(\mathcal{F}^{*}\right)$, with $\Delta_{\mathcal{D F}}(\mathcal{F})=x \otimes 1+1 \otimes x$ for all $x \in \mathcal{F}$. And with $m_{\mathcal{S F}^{*}}: \mathcal{S F} \mathcal{F}^{*} \otimes \mathcal{S F} \mathcal{F}^{*} \rightarrow \mathcal{S F}{ }^{*}$ is a map of co-algebras, $\Delta_{\mathcal{D F}}: \Delta_{\mathcal{D F}} \rightarrow \Delta_{\mathcal{D F}}$ is a map of algebras.
It follows that
$\Delta_{\mathcal{D F}}\left(f_{1}^{\left(\alpha_{1}\right)} f_{2}^{\left(\alpha_{2}\right)} \ldots f_{t}^{\left(\alpha_{t}\right)}\right)=\sum_{0 \leq \beta_{i} \leq \alpha_{i}} f_{1}^{\left(\beta_{1}\right)} f_{2}^{\left(\beta_{2}\right)} \ldots f_{t}^{\left(\beta_{t}\right)} \otimes f_{1}^{\left(\alpha_{1}-\beta_{1}\right)} f_{2}^{\left(\alpha_{2}-\beta_{2}\right)} \ldots f_{t}^{\left(\alpha_{t}-\beta_{t}\right)}$.
The component $\mathcal{D}_{r} \mathcal{F} \rightarrow \mathcal{F} \otimes \ldots \otimes \mathcal{F}$ of r-fold diagonalization is a split monomorphism (over \mathcal{R}) and its image is the module of symmetric r-tensors.

1.2 Schur functors

This section exhibit the definitions of the Schur and Weyl modules as in [2], [3] and [7]; where the authors give a structure that associates a $G L_{m}{ }^{-}$ representation to any "generalized" shape like

Moreover, we will work over a commutative ring \mathcal{R} with identity and letters \mathcal{F}, G etc. will mention to finitely generated free \mathcal{R}-modules.

As in section one, the notation $\Lambda^{k} \mathcal{F}, \delta_{k} \mathcal{F}$ and $\mathcal{D}_{k} \mathcal{F}$ will mean the $k^{\text {th }}$ exterior, symmetric and divided powers of \mathcal{F}.

If $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a sequence of integers, then
$\Lambda_{a} \mathcal{F}=\Lambda^{a_{1}} \mathcal{F} \otimes \Lambda^{a_{2}} \mathcal{F} \otimes \ldots \otimes \Lambda^{a_{n} \mathcal{F}}$
$\delta_{a} \mathcal{F}=\mathcal{S}_{a_{1}} \mathcal{F} \otimes \mathcal{S}_{a_{2}} \mathcal{F} \otimes \ldots \otimes \mathcal{S}_{a_{n}} \mathcal{F}$
$\mathcal{D}_{a} \mathcal{F}=\mathcal{D}_{a_{1}} \mathcal{F} \otimes \mathcal{D}_{a_{2}} \mathcal{F} \otimes \ldots \otimes \mathcal{D}_{a_{n}} \mathcal{F}$
If $a=\sum a_{i}$, there is no confusion about what is meant by the diagonalizations
$\Lambda_{a} \mathcal{F} \longrightarrow \Lambda^{a_{1}} \mathcal{F} \otimes \Lambda^{a_{2}} \mathcal{F} \otimes \ldots \otimes \Lambda^{a_{n}} \mathcal{F}$
$\mathcal{S}_{a} \mathcal{F} \longrightarrow \mathcal{S}_{a_{1}} \mathcal{F} \otimes \mathcal{S}_{a_{2}} \mathcal{F} \otimes \ldots \otimes \mathcal{S}_{a_{n}} \mathcal{F}$
$\mathcal{D}_{a} \mathcal{F} \longrightarrow \mathcal{D}_{a_{1}} \mathcal{F} \otimes \mathcal{D}_{a_{2}} \mathcal{F} \otimes \ldots \otimes \mathcal{D}_{a_{n}} \mathcal{F}$

We need all the following definitions which are appearing in [2].

Definitions (1.2.1):

- A partition of length $n=\ell(\lambda)$ is a sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ of non negative integers in non-increasing order $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}>0$.
- The weight of a partition, or more generally of any finite sequence λ of nonnegative integers is the sum of all the terms of λ and is denoted by $|\lambda|$ i.e.

$$
|\lambda|=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}
$$

It is often convenient not to distinguish between $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, 0\right)$ for this purpose we let \mathcal{N}^{∞} denote the set of all infinite sequences of non negative integers containing only a finite number of non-zero terms. Given any finite sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ we can think of it as a sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, 0,0, \ldots\right)$ in \mathcal{N}^{∞} by extension with zeroes.

- A relative sequence is a pair (λ, μ) of sequences in \mathcal{N}^{∞} such that $\mu \leq \lambda$ means that $\mu_{i} \leq \lambda_{i}$ for all $i \geq 1$. We shall use the notation λ / μ to represent relative sequences.
- If both λ and μ are partitions, then the relative sequence λ / μ will be called a skew partition. It is natural to think of a sequence λ in \mathcal{N}^{∞} as relative sequence $\lambda /(0)$ by talking the zero sequence $(0)=(0,0, \ldots)$ as the second part of the pair.
- Suppose that $\lambda / \mu=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) /\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$ is a skew partition. The diagram $\Delta_{\lambda / \mu}$ of λ / μ is defined to be the set of all ordered pairs (i, j) of integers satisfying the inequalities $1 \leq i \leq n$ and $\mu_{i}<j \leq \lambda_{i}$ jointly.
- The shape matrix of λ / μ is $n \times t$ matrix $\alpha=\left(\alpha_{i j}\right)$ defined by the rule

$$
\alpha_{i j}= \begin{cases}1 & \text { if } \quad \mu_{i}<j \leq \lambda_{i} \\ 0 & \text { otherwise }\end{cases}
$$

where we take $t=\lambda_{1}$.

For any partition or sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ as an infinite sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, 0,0, \ldots\right)$ with finite support, it may be convenient to think of $n \times t$ shape matrix $\alpha=\left(\alpha_{i j}\right)$ as an infinite matrix

$$
\alpha=\left[\begin{array}{ccccccc}
\alpha_{11} & \alpha_{12} & \ldots & \alpha_{1 t} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\alpha_{n 1} & \alpha_{n 2} & \ldots & \alpha_{n t} & 0 & 0 & \cdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right],
$$

of zeros and ones with finite support.

- If α is the shape matrix of a relative sequence λ / μ then the support of α is exactly the diagram of λ / μ.
- The weight of a shape matrix $\alpha=\left(\alpha_{i j}\right)$ is defined to be the sum of all the entries ($\alpha_{i j}$) of α and is denoted by $|\alpha|$.
If $\alpha=\lambda / \mu$ is the shape matrix associated with a relative sequence, then clearly $|\alpha|=|\lambda|-|\mu|$.
- If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right) \in \mathcal{N}^{\infty}$ is a partition, then its conjugate (or transpose) is defined to be the partition $\tilde{\lambda}=\left(\tilde{\lambda}_{1}, \tilde{\lambda}_{2}, \ldots\right)$; where $\tilde{\lambda}_{j}$ is the number of terms of λ which are greater than or equal to j.

Similarly, if $\alpha=\left(\alpha_{i j}\right)$ is a shape matrix, $\tilde{\alpha}=\left(\tilde{\alpha}_{i j}\right)$ is defined to be the transpose of α by taking $\left(\alpha_{i j}\right)=\left(\tilde{\alpha}_{j i}\right)$.

Notice that if α is the shape matrix of a relative sequence λ / μ, then $\alpha_{i}=\lambda_{i}-\mu_{i}$ for all i.

- If λ / μ is a skew partition, then $\tilde{\alpha}_{j}=\tilde{\lambda}_{j}-\tilde{\mu}_{j}$ for all j. To a finite shape matrix $\alpha=\left(\alpha_{i j}\right)$, with $i=1,2, \ldots, n, j=1,2, \ldots, t$, there is associate between the sequence $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of row sums of α; where $a_{i}=$ $\sum_{j=1}^{t} \alpha_{i j}$ and the sequence $b=\left(b_{1}, b_{2}, \ldots, b_{t}\right)$ of column sums of α; where $b_{j}=\sum_{i=1}^{n} \alpha_{i j}$.

To each shape matrix α and to each free module \mathcal{F}, there are associated two maps
$d_{\alpha}(\mathcal{F}): \Lambda_{a} \mathcal{F} \rightarrow \mathcal{S}_{b} \mathcal{F} \quad$ (Schur map)
$d_{\alpha}^{\prime}(\mathcal{F}): \mathcal{D}_{a} \mathcal{F} \rightarrow \Lambda_{b} \mathcal{F} \quad$ (Weyl map),
whose images will be called respectively Schur modules and Weyl modules denoted by $\mathcal{L}_{\alpha}(\mathcal{F})$ and $\mathcal{K}_{\alpha}(\mathcal{F})$ respectively.
$d_{\alpha}(\mathcal{F})$ and $d_{\alpha}^{\prime}(\mathcal{F})$ are defined as follows:
Consider first the map $u=\Delta \otimes \Delta \otimes \ldots \otimes \Delta$

$$
\Lambda_{a} \mathcal{F}
$$

$$
\begin{equation*}
\xrightarrow{u}\left(\Lambda^{a_{11}} \mathcal{F} \otimes \Lambda^{a_{12}} \mathcal{F} \otimes \ldots \otimes \Lambda^{a_{11} \mathcal{F}}\right) \otimes \ldots \otimes\left(\Lambda^{a_{n 1}} \mathcal{F} \otimes \Lambda^{a_{n 2}} \mathcal{F} \otimes \ldots \otimes \Lambda^{a_{n}} \mathcal{F}\right) ; \tag{*}
\end{equation*}
$$

where each $\Lambda^{a_{i} \mathcal{F}}$ maps by appropriate diagonalization Δ into $\Lambda^{a_{i 1} \mathcal{F}} \otimes \Lambda^{a_{i 2}} \mathcal{F} \otimes \ldots \otimes \Lambda^{a_{i t}} \mathcal{F}$.

By rearranging terms of (*), we have an isomorphism
$\left(\Lambda^{a_{11} \mathcal{F}} \otimes \Lambda^{a_{12}} \mathcal{F} \otimes \ldots \otimes \Lambda^{a_{1 t} \mathcal{F}}\right) \otimes \ldots \otimes\left(\Lambda^{a_{n 1} \mathcal{F}} \otimes \Lambda^{a_{n 2} \mathcal{F}} \otimes \ldots \otimes \Lambda^{a_{n t} \mathcal{F}}\right)$
$\xrightarrow{\theta}\left(\Lambda^{a_{11} \mathcal{F}} \otimes \Lambda^{a_{21} \mathcal{F}} \otimes \ldots \otimes \Lambda^{a_{n 1} \mathcal{F}}\right) \otimes \ldots \otimes\left(\Lambda^{a_{1 t} \mathcal{F}} \otimes \Lambda^{a_{2 t} \mathcal{F}} \otimes \ldots \otimes \Lambda^{a_{n t} \mathcal{F}}\right)$ $=$
$\left(\mathcal{S}_{a_{11}} \mathcal{F} \otimes \mathcal{S}_{a_{21}} \mathcal{F} \otimes \mathcal{S}_{a_{n 1}} \mathcal{F}\right) \otimes \ldots \otimes\left(\mathcal{S}_{a_{1 t}} \mathcal{F} \otimes \mathcal{S}_{a_{2 t}} \mathcal{F} \otimes \ldots \otimes \mathcal{S}_{a_{n t}} \mathcal{F}\right)$
Finally, by multiplication in the symmetric algebra $\mathcal{S F}$, for each factor above, we have the map

$$
\mathcal{S}_{a_{1 j}} \mathcal{F} \otimes \mathcal{S}_{a_{2 j}} \mathcal{F} \otimes \ldots \otimes \mathcal{S}_{a_{n j}} \mathcal{F} \xrightarrow{m} S_{b j} \mathcal{F}
$$

so that one obtains the composite map
$\Lambda_{a} F$
$\xrightarrow{u}\left(\Lambda^{a_{11}} \mathcal{F} \otimes \Lambda^{a_{12}} \mathcal{F} \otimes \ldots \otimes \Lambda^{a_{1 t}} \mathcal{F}\right) \otimes \ldots \otimes\left(\Lambda^{a_{n 1}} \mathcal{F} \otimes \Lambda^{a_{n 2}} \mathcal{F} \otimes \ldots \otimes \Lambda^{a_{n t}} \mathcal{F}\right)$
$\xrightarrow{\theta}\left(\mathcal{S}_{a_{11}} \mathcal{F} \otimes \mathcal{S}_{a_{21}} \mathcal{F} \otimes \mathcal{S}_{a_{n 1}} \mathcal{F}\right) \otimes \ldots \otimes\left(\mathcal{S}_{a_{1 t}} \mathcal{F} \otimes \mathcal{S}_{a_{2 t}} \mathcal{F} \otimes \ldots \otimes \mathcal{S}_{a_{n t}} \mathcal{F}\right)$
$\xrightarrow{v}\left(S_{b 1} \mathcal{F} \otimes S_{b 2} \mathcal{F} \otimes \mathcal{S}_{b t} \mathcal{F}\right)=S_{b} \mathcal{F} ;$
where $v=m_{1} \otimes m_{2} \otimes \ldots \otimes m_{t}$.

The following example clarifies the above definitions.

Example (1.2.2):

Let $\lambda / \mu=(7,5,4,2,1) /(5,3,1,1,0)$, then we have:

1. The shape matrix of $\lambda / \mu=\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
2. The diagram of λ / μ is

3. The shape matrix of $\tilde{\lambda} / \tilde{\mu}=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right]$
4. The diagram of $\tilde{\lambda} / \tilde{\mu}$ is

5. The sequence of row sums of λ / μ is $(2,2,3,1,1)$ and the sequence of column sums of λ / μ is $(1,2,1,2,1,1,1)$.
6. The sequence of row sums of $\tilde{\lambda} / \tilde{\mu}$ is $(1,2,1,2,1,1,1)$ and the sequence of column sums of $\tilde{\lambda} / \tilde{\mu}$ is (2,2,3,1,1).

Definition (1.2.3): [2]

The Schur map $d_{\alpha}(\mathcal{F})$ associated to the shape matrix α and the free module F is the following composite map:

$$
d_{\alpha}(\mathcal{F})=v \circ \theta \circ u
$$

Similar diagonalization, rearrangement, identification and multiplication maps, give the definition of the Weyl map $d^{\prime}{ }_{\alpha}(\mathcal{F})$ as the following composition map $\mathcal{D}_{\boldsymbol{\alpha}} \mathcal{F} \xrightarrow{u^{\prime}}\left(\mathcal{D}_{a_{11}} \mathcal{F} \otimes \mathcal{D}_{a_{12}} \mathcal{F} \otimes \ldots \otimes \mathcal{D}_{a_{1 t}} \mathcal{F}\right) \otimes \ldots \otimes\left(\mathcal{D}_{a_{n 1}} \mathcal{F} \otimes D_{a_{n 2}} \mathcal{F} \otimes \ldots \otimes \mathcal{D}_{a_{n t}} \mathcal{F}\right)$ $\xrightarrow{\theta^{\prime}}\left(\Lambda^{a_{11}} \mathcal{F} \otimes \Lambda^{a_{21}} \mathcal{F} \otimes \ldots \otimes \Lambda^{a_{n 1}} \mathcal{F}\right) \otimes \ldots \otimes\left(\Lambda^{a_{1 t}} \mathcal{F} \otimes \Lambda^{a_{2 t}} \mathcal{F} \otimes \ldots \otimes \Lambda^{a_{n t}} \mathcal{F}\right)$ $\xrightarrow{v^{\prime}}\left(\Lambda^{a_{b 1}} \mathcal{F} \otimes \Lambda^{a_{b 2}} \mathcal{F} \otimes \ldots \otimes \Lambda^{a_{b t}} \mathcal{F}\right)=\Lambda^{b} \mathcal{F}$.
Such that $d^{\prime}{ }_{\alpha}(\mathcal{F})=v^{\prime} \circ \theta^{\prime} \circ u^{\prime}$

In our work, we will be dealing only with two types of shape matrices which are partition and skew-partition.

Example (1.2.4):

Let $\lambda=(5,5,4,4), \mu=(3,2,2,0)$ then we have

1. The shape matrix of $\lambda / \mu=\left[\begin{array}{ccccc}0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0\end{array}\right]$
2. The diagram of λ / μ is

3. $d_{\lambda}(\mathcal{F}): \Lambda^{2} \mathcal{F} \otimes \Lambda^{3} \mathcal{F} \otimes \Lambda^{2} \mathcal{F} \otimes \Lambda^{4} \mathcal{F} \longrightarrow \mathcal{S}_{1} \mathcal{F} \otimes \mathcal{S}_{1} \mathcal{F} \otimes \mathcal{S}_{3} \mathcal{F} \otimes \mathcal{S}_{4} \mathcal{F} \otimes \mathcal{S}_{2} \mathcal{F}$
4. $d_{\lambda}^{\prime}(\mathcal{F}): \mathcal{D}_{2} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \otimes \mathcal{D}_{4} \mathcal{F} \longrightarrow \Lambda^{1} \mathcal{F} \otimes \Lambda^{1} \mathcal{F} \otimes \Lambda^{3} \mathcal{F} \otimes \Lambda^{4} \mathcal{F} \otimes \Lambda^{2} \mathcal{F}$

Definition (1.2.5): [2]

Let λ / μ be a skew-partition and let $p_{i}=\lambda_{i}-\mu_{i}$, for $i=1,2, \ldots, n$, $n=\ell(\lambda)$ and let $t_{i}=\mu_{i}-\mu_{i+1}+1$ for $i=1,2, \ldots, n-1$; for each $i \leq n-1$ and $\ell \geq 0$, we have the following map:
$\Lambda^{p_{1} \mathcal{F}} \otimes \Lambda^{p_{2}} \mathcal{F} \otimes \ldots \otimes \Lambda^{p_{i}+t_{i}+\ell} \mathcal{F} \otimes \Lambda^{p_{i+1}-t_{i}-\ell} \mathcal{F} \otimes \ldots \otimes \Lambda^{p_{n}} \mathcal{F}$
$\longrightarrow \Lambda^{p_{1}} \mathcal{F} \otimes \Lambda^{p_{2}} \mathcal{F} \otimes \ldots \otimes \Lambda^{p_{n} \mathcal{F}}$
Defined by diagonalizing $\Lambda^{p_{i}+t_{i}+\ell} \mathcal{F}$ into $\Lambda^{p_{i}} \mathcal{F} \otimes \Lambda^{t_{i}+\ell} \mathcal{F}$ and then multiplying $\Lambda^{t_{i}+\ell} \mathcal{F} \otimes \Lambda^{p_{i+1}-t_{i}-\ell} \mathcal{F}$ into $\Lambda^{p_{i+1}} \mathcal{F}$.
We denoted this map by \square_{i}^{ℓ} and let
$\square_{\lambda_{i} / \mu_{i}}=\sum_{\ell=0}^{p_{i+1}-t_{i}} \square_{i}^{\ell}$

The map

$$
\square_{\lambda / \mu}: \sum_{i, \ell} \Lambda^{p_{1}} \mathcal{F} \otimes \Lambda^{p_{2}} \mathcal{F} \otimes \ldots \otimes \Lambda^{p_{i}+t_{i}+\ell} \mathcal{F} \otimes \Lambda^{p_{i+1}-t_{i}-\ell} \mathcal{F} \otimes \ldots \otimes \Lambda^{p_{n} \mathcal{F}}
$$

$$
\longrightarrow \Lambda^{p_{1}} \mathcal{F} \otimes \Lambda^{p_{2}} \mathcal{F} \otimes \ldots \otimes \Lambda^{p_{n} \mathcal{F}}
$$

is defined by

$$
\begin{equation*}
\square_{\lambda / \mu}=\sum_{i=1}^{n-1} \square_{\lambda_{i} / \mu_{i}} \tag{**}
\end{equation*}
$$

The authors in [2] shown that $d_{\lambda / \mu}(\mathcal{F}) \circ \square_{\lambda / \mu}=0$.

In particular, it follows that there exists a natural map

$$
\theta_{\lambda / \mu}: \overline{\mathcal{L}}_{\lambda / \mu}(\mathcal{F})=\operatorname{coker} \square_{\lambda / \mu} \rightarrow \mathcal{L}_{\lambda / \mu}(\mathcal{F})
$$

The exact same structure of maps can be made if we replace all exterior powers by divided powers. In particular, there exists a natural map

$$
\theta_{\lambda / \mu}^{\prime}: \overline{\mathcal{K}}_{\lambda / \mu}(\mathcal{F})=\operatorname{coker} \square_{\lambda / \mu}^{\prime} \rightarrow \mathcal{K}_{\lambda / \mu}(\mathcal{F})
$$

where

$$
\square_{\lambda / \mu}^{\prime}=\sum_{i=1}^{n-1} \square_{\lambda_{i} / \mu_{i}}^{\prime} \quad, \quad \square_{\lambda_{i} / \mu_{i}}^{\prime}=\sum_{\ell=0}^{p_{i+1}-t_{i}-1} \square_{i}^{\ell \ell}
$$

$\square^{\prime \ell}: \mathcal{D}_{p_{1}} \mathcal{F} \otimes \mathcal{D}_{p_{2}} \mathcal{F} \otimes \ldots \otimes \mathcal{D}_{p_{i}+t_{i}+\ell} \mathcal{F} \otimes \mathcal{D}_{p_{i+1}-t_{i}-\ell} \mathcal{F} \otimes \ldots \otimes \mathcal{D}_{p_{n}} \mathcal{F}$
$\longrightarrow \mathcal{D}_{p_{1}} \mathcal{F} \otimes \mathcal{D}_{p_{2}} \mathcal{F} \otimes \ldots \otimes \mathcal{D}_{p_{n}} \mathcal{F}$

Theorem (1.2.6): [2]

For any skew-partition λ / μ, the module $\mathcal{L}_{\lambda / \mu}(\mathcal{F})\left(\mathcal{K}_{\lambda / \mu}(\mathcal{F})\right)$ is free and the morphism $\theta_{\lambda / \mu}\left(\theta_{\lambda / \mu}^{\prime}\right)$ is an isomorphism. In particular, it follows that $\mathcal{L}_{\lambda / \mu}(\mathcal{F})$ $\left(\mathcal{K}_{\lambda / \mu}(\mathcal{F})\right)$ is universally free module.

To describe a basis for $\mathcal{L}_{\lambda / \mu}(\mathcal{F})\left(\mathcal{K}_{\lambda / \mu}(\mathcal{F})\right)$ in terms of an explicit basis for \mathcal{F} one needs the notation of tableaux.

First notice that if $\mathcal{S}=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ is a basis for the module \mathcal{F} and $\mathrm{I}=\left\{1<i_{1}<i_{2}<\cdots<i_{s}<m\right\}$ is a strictly increasing subset of $\{1,2, \ldots, m\}$ then $f_{\mathrm{I}}=f_{i_{1}, i_{2}, \ldots, i_{s}}=f_{i_{1}} \wedge f_{i_{2}} \wedge \ldots \wedge f_{i_{s}} \in \Lambda^{s} \mathcal{F}$.

In particular the elements $f_{\mathrm{I}_{1}} \otimes f_{\mathrm{I}_{2}} \otimes \ldots \otimes f_{\mathrm{I}_{n}} \in \Lambda^{s_{1}} \mathcal{F} \otimes \Lambda^{s_{2}} \mathcal{F} \otimes \ldots \otimes \Lambda^{s_{n}} \mathcal{F}$, form a basis of $\Lambda_{\lambda / \mu}(\mathcal{F})$; where I_{i} is a strictly increasing subset of $\{1,2, \ldots, m\}$ having \mathcal{S}_{i} elements.

From the above theorem we have the following remarks:

Remark (1.2.7): [2]

The elements $d_{\lambda / \mu}\left(f_{\mathrm{I}_{1}} \otimes f_{\mathrm{I}_{2}} \otimes \ldots \otimes f_{\mathrm{I}_{m}}\right) \in \mathcal{L}_{\lambda / \mu}(\mathcal{F})$, are a set of generators for $\mathcal{L}_{\lambda / \mu}(\mathcal{F})$.

Now if \mathcal{J} is any non-decreasing sequence $1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{s} \leq m$ of integers, grouping these integers into distinct clumps:
$1 \leq j_{1}=j_{2}=\cdots=j_{t_{1}}<j_{t_{1}+1}=\cdots=j_{t_{2}}<j_{t_{2}+1}=\cdots=j_{t_{l}}<j_{t_{l}+1}=\cdots=j_{s} \leq m$
One obtains a basis element of $\mathcal{D}_{S} \mathcal{F}$ by setting
$f_{\mathcal{J}}=j_{j_{1}}^{\left(t_{1}\right)} j_{j_{2}}^{\left(t_{2}-t_{1}\right)} \ldots j_{j_{s}}^{\left(t_{s}-t_{1}\right)} \in \mathcal{D}_{s} \mathcal{F}$

In particular, the elements $f_{j_{1}} \otimes f_{j_{2}} \otimes \ldots \otimes f_{j_{n}} \in \mathcal{D}_{s_{1}} \mathcal{F} \otimes \mathcal{D}_{s_{2}} \mathcal{F} \otimes \ldots \otimes \mathcal{D}_{s_{n}} \mathcal{F}$ forms a basis of $\mathcal{D}_{\lambda / \mu} \mathcal{F}$; where \mathcal{J}_{k} is any non-decreasing subset of $\{1,2, \ldots, m\}$ having s_{k} elements.

Remark (1.2.8): [2]

The elements $d^{\prime}{ }_{\lambda / \mu}\left(f_{\mathcal{J}_{1}} \otimes f_{\mathcal{J}_{2}} \otimes \ldots \otimes f_{\mathcal{J}_{n}}\right) \in \mathcal{K}_{\lambda / \mu} \mathcal{F}$, are a set of generators for $\mathcal{K}_{\lambda / \mu} \mathcal{F}$.

Definition (1.2.9): [2]

Let $\mathcal{S}=\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$ be a totally ordered basis for the free module \mathcal{F} and let λ / μ be a skew-partition with diagram $\Delta_{\lambda / \mu}$. A tableau of shape λ / μ with values in \mathcal{S} is a function \mathcal{T} from $\Delta_{\lambda / \mu}$ to \mathcal{S}. The set of all such tableaux is denoted by $\operatorname{Tab}_{\lambda / \mu}(\mathcal{S})$.

Notice that a tableau $\mathcal{T} \in \operatorname{Tab}_{\lambda / \mu}(\mathcal{S})$ can be thought of as the diagram $\Delta_{\lambda / \mu}$ filled in with basic elements, conversely, any $\mathcal{T} \in \operatorname{Tab}_{\lambda / \mu}(\mathcal{S})$ gives an element in $\Lambda_{\lambda / \mu}(\mathcal{F})\left(\mathcal{D}_{\lambda / \mu} \mathcal{F}\right)$, which is not necessarily a basis element of $\Lambda_{\lambda / \mu}(\mathcal{F})\left(\mathcal{D}_{\lambda / \mu} \mathcal{F}\right)$.

This lead to define a tableau $\mathcal{T} \in \operatorname{Tab}_{\lambda / \mu}(\mathcal{S})$ to be row-standard (co-row-standard) if in each row of the diagram, the basis entries are strictly increasing (non-decreasing) from left to right. \mathcal{T} is said to be column-standard (co-column-standard) if in each column of the diagram, the basis entries are non-decreasing (strictly increasing) from top to bottom. \mathcal{T} is said to be standard (co-standard) if it is both row and column-standard (co-row and co-columnstandard).

The following example illustrates the above definition.

Example (1.2.10):

If $h=h_{2} \wedge h_{4} \wedge h_{6} \wedge h_{7} \otimes h_{1} \wedge h_{3} \wedge h_{5} \otimes h_{2} \wedge h_{3} \in \Lambda_{(7,5,3) /(3,2,1)} \mathcal{F}$, and $\tilde{h}=h_{1} \cdot h_{3}^{(2)} \cdot h_{7} \otimes h_{2}^{(2)} \cdot h_{4} \otimes h_{1} \cdot h_{3} \in \mathcal{D}_{(7,5,3) /(3,2,1)} \mathcal{F}$, then
$\mathcal{T}_{\hbar}:$

$\mathcal{T}_{\tilde{\mathfrak{n}}}:$

Thus \mathcal{T}_{h} and $\mathcal{T}_{\tilde{h}}$ are standard.

The following theorem depicts a basis for $\mathcal{L}_{\lambda / \mu}(\mathcal{F}) \mathcal{K}_{\lambda / \mu}(\mathcal{F})$ in terms of tableaux.

Theorem (1.2.11): [2]
If $\mathcal{S}=\left\{f_{1}, \ldots, f_{m}\right\}$ is a basis for \mathcal{F}, then $\left\{d_{\lambda / \mu}(\mathcal{F})(\mathcal{T}) / \mathcal{T}\right.$ is a standard tableau in \mathcal{S} of shape $\lambda / \mu\}$ is a basis for $\mathcal{L}_{\lambda / \mu}(\mathcal{F})$. For Weyl modules, we have $\left\{d^{\prime}{ }_{\lambda / \mu}(\mathcal{F})(\mathcal{T}) /(\mathcal{T})\right.$ is a co-standard tableau in \mathcal{S} of shape $\left.\lambda / \mu\right\}$ is a basis of $\mathcal{K}_{\lambda / \mu} \mathcal{F}$.

1.3 Letter place algebra

This section is a survey of the notion of the principal tools we need to translate into letter-place language, the description of the Weyl (Schur) maps $d^{\prime}{ }_{\alpha}\left(d_{\alpha}\right)$ and of the "box maps" $\square^{\prime}{ }_{\alpha}\left(\square_{\alpha}\right)$ pointed at in the survey section 1.2, [2]. For a complete treatment of the letter-place algebra, we will refer to [20]; where multi-signed, alphabets and places are treated in a uniform and general set-up. In our context, we will describe the basic elements of a given tensor product
$\mathcal{D}_{\beta_{1}} \mathcal{F} \otimes \mathcal{D}_{\beta_{2}} \mathcal{F} \otimes \ldots \otimes \mathcal{D}_{\beta_{n}} \mathcal{F} \quad$ using \quad the positive letters alphabet $L=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{m}\right\}=\mathcal{S}$ (recall that $\mathcal{S}=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ is a totally ordered basis for the module \mathcal{F}). Also, in order to keep track of the position i in the above tensor product, the totally ordered set $\mathcal{P}^{+}=\{1,2, \ldots, i, \ldots, n\}$ of places is considered as a positive place alphabet.

For example:
An element $w=w_{1} \otimes w_{2} \otimes \ldots \otimes w_{n} \in \mathcal{D}_{\beta_{1}} \mathcal{F} \otimes \mathcal{D}_{\beta_{2}} \mathcal{F} \otimes \ldots \otimes \mathcal{D}_{\beta_{n}} \mathcal{F}$ would be written in letter-place algebra as
$\left(w_{1} \mid 1^{\left(\beta_{1}\right)}\right)\left(w_{2} \mid 2^{\left(\beta_{2}\right)}\right) \cdots\left(w_{n} \mid n^{\left(\beta_{n}\right)}\right) \in \mathcal{D}_{\beta_{1}} \mathcal{F} \otimes \mathcal{D}_{\beta_{2}} \mathcal{F} \otimes \cdots \otimes \mathcal{D}_{\beta_{n}} \mathcal{F}$,
to indicate that w is the tensor product of a basis element w_{1} in degree β_{1} in the first factor, w_{2} in degree β_{2} in the second factor and so on w_{n} of degree β_{n} in the last factor, [12] .
Adopting the double tableau notation as in [14], we will also write
$w=\left(\begin{array}{c|c}w_{1} & 1^{\left(\beta_{1}\right)} \\ w_{2} & 2^{\left(\beta_{2}\right)} \\ \vdots & \vdots \\ w_{n} & n^{\left(\beta_{n}\right)}\end{array}\right) \in \mathcal{D}_{\beta_{1}} \mathcal{F} \otimes \mathcal{D}_{\beta_{2}} \mathcal{F} \otimes \ldots \otimes \mathcal{D}_{\beta_{n}} \mathcal{F}$
Moreover, the following symbols will be often used
$w^{\prime}=\left(v \mid 1^{(r)} 2^{(s)}\right)=\sum_{(v)} v_{(1)} \otimes v_{(2)} \in \mathcal{D}_{r} \mathcal{F} \otimes \mathcal{D}_{s} \mathcal{F}$,
where $v \in \mathcal{D}_{r+s} \mathcal{F}$ and $\Delta_{(r+s)}: \mathcal{D}_{r+s} \mathcal{F} \rightarrow \mathcal{D}_{r} \mathcal{F} \otimes \mathcal{D}_{s} \mathcal{F}$ is the appropriate degree diagonalization map (Sweedler notation for the co-product applied to v), and

At this point in order to clarify the letter-place conventions and calculations, we first give a brief summary of letter-place set up, [17].

Given two free Z-modules \mathscr{L} and \mathcal{P}^{+}one can construct a bilinear pairing (or Laplace pairing) (|) of the divided power algebras $\mathcal{D}(\mathscr{L})$ and $\mathcal{D}\left(\mathcal{P}^{+}\right)$into $\mathcal{D}\left(\mathscr{L} \otimes \mathcal{P}^{+}\right)$.

We follow the definitions given in [22] which are properly applied to a direct sum of free modules $\mathcal{P}=\mathcal{P}^{+} \oplus \mathcal{P}^{-}$(positively and negatively signed places). In particular, we have specialized above to the case $\mathcal{P}^{-}=0$, so we let $\mathcal{P}=\mathcal{P}^{+}$.

Notice that in general, in this theory, we have also positive and negative letters, i.e $\mathscr{L}^{=} \mathscr{L}^{+} \oplus \mathscr{L}^{-}$. In our case (of divided powers), we have $\mathscr{L}^{-}=0$ and $\mathscr{L}=\mathscr{L}^{+} ;$in terms of bases, for $\mathscr{L}^{-}=\mathcal{P}^{-}=0,(\|)$ generalizes the permanent.

We identify the basis $\{\ell \otimes p \mid \ell \in \mathscr{L}, p \in \mathcal{P}\}$ of $\mathscr{L} \oplus \mathcal{P}$ with the set $\{(\ell \mid p) \mid \ell \in \mathscr{L}, p \in \mathcal{P}\}$ of "letter-places". The algebra $\mathcal{D}(\mathscr{L} \oplus \mathcal{P})$ can now be identified with the commutative associative algebra $\mathcal{D}([\mathscr{L} \mid \mathcal{P}])$ generated by all $(\ell \mid p)$ and satisfying the relations:
$b^{0}=1, b^{(i)} b^{(j)}=\binom{i+j}{j} b^{(i+j)}$, for all $b=(\ell \mid p)$.

For $\ell_{1}, \ell_{2}, \ldots, \ell_{k} \in \mathscr{L}$ and $p_{1}, p_{2}, \ldots, p_{n} \in \mathcal{P}$, we have:

$$
\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k} \mid p_{1}, p_{2}, \ldots, p_{n}\right)=\left\{\begin{array}{cl}
\sum_{\sigma \in S_{k}}\left(\ell_{\sigma_{(1)}} \mid p_{1}\right)\left(\ell_{\sigma_{(2)}} \mid p_{2}\right) \cdots\left(\ell_{\sigma_{(k)}} \mid p_{k}\right) & ; \text { if } n=k \tag{1.3.4}\\
0 & \text { otherwise }
\end{array}\right.
$$

In our case, as above, we will generally by using a positive letter alphabet $\mathscr{L}=\mathcal{S}=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ i.e. for us $\mathscr{L}=\mathcal{F}$ and a positive place alphabet $\mathcal{P}=\{1,2, \ldots, n\}$ which corresponds to a fixed choice of a basis of the positive places module \mathcal{P}.

We recall the following expansion properties of the bi-product (\mid)
$\left(\ell^{(k)} \mid p^{(k)}\right)=(\ell \mid p)^{(k)}$, for $\ell \in \mathscr{L}, p \in \mathcal{P}^{+}$
$\left(w \mid u u^{\prime}\right)=\sum_{(w)}\left(w_{(1)} \mid u\right)\left(w_{(2)} \mid u^{\prime}\right)$
$\left(w w^{\prime} \mid u\right)=\sum_{(u)}\left(w \mid u_{(1)}\right)\left(w^{\prime} \mid u_{(2)}\right) ;$
where

$$
\begin{aligned}
& w=\ell^{(\alpha)}=\ell_{1}^{\left(\alpha_{1}\right)} \ell_{2}^{\left(\alpha_{2}\right)} \ldots \ell_{m}^{\left(\alpha_{m}\right)} \quad, \quad w^{\prime}=\ell^{(\alpha \prime)}=\ell_{1}^{\left(\alpha_{1}^{\prime}\right)} \ell_{2}^{\left(\alpha_{2}^{\prime}\right)} \ldots \ell_{m}^{\left(\alpha_{m}^{\prime}\right)} \\
& u=p^{(\beta)}=1^{\left(\beta_{1}\right)} 2^{\left(\beta_{2}\right)} \ldots n^{\left(\beta_{n}\right)} \quad, \quad u^{\prime}=p^{\left(\beta^{\prime}\right)}=1^{\left(\beta_{1}^{\prime}\right)} 2^{\left(\beta_{2}^{\prime}\right)} \ldots n^{\left(\beta_{n}^{\prime}\right)}, \\
& \sum_{(w)} w_{(1)} \otimes w_{(2)} \text { and } \sum_{(u)} u_{(1)} \otimes u_{(2)},
\end{aligned}
$$

are the Sweedler notations for the co-product Δ in the appropriate degrees applied to w and u respectively.

Notice finally that in general we have the following rule:

$$
\begin{aligned}
(w \mid u) & =\sum_{\left(\ell^{(\alpha)}\right)}\left(w_{(1)} \mid 1^{\left(\beta_{1}\right)}\right)\left(w_{(2)} \mid 2^{\left(\beta_{2}\right)}\right) \ldots\left(w_{(n)} \mid n^{\left(\beta_{n}\right)}\right) \\
& =\sum_{\left(p^{(\beta)}\right)}\left(\ell_{1}^{\left(\alpha_{1}\right)} \mid u_{(1)}\right)\left(\ell_{2}^{\left(\alpha_{2}\right)} \mid u_{(2)}\right) \ldots\left(\ell_{m}^{\left(\alpha_{m)}\right.} \mid u_{(m)}\right)
\end{aligned}
$$

Notice that since $\mathscr{L}=\mathscr{L}^{+}$and $\mathcal{P}=\mathcal{P}^{+}$are totally ordered sets, we can talk not only about "double tableaux" as in (1.3.1), (1.3.2) but also about double standard tableaux. In particularly given basis words $w_{1}, w_{2}, \ldots, w_{s}$ in $\mathcal{D}([\mathscr{L}])$ and $u_{1}, u_{2}, \ldots, u_{s}$ in $\mathcal{D}([\mathcal{P}])$ we have the tableaux:
$\left(\mathcal{T} \mid \mathcal{T}^{\prime}\right)=\left(\begin{array}{c|c}w_{1} & u_{1} \\ w_{2} & u_{2} \\ \vdots & \vdots \\ w_{s} & u_{s}\end{array}\right)=\left(\omega_{1} \mid u_{1}\right)\left(\omega_{2} \mid u_{2}\right) \ldots\left(\omega_{s} \mid u_{s}\right)$.
Recall that any basis word $w_{i} \in \mathcal{D}_{\lambda_{i}}([\mathcal{L}])$; for $i=1,2, \ldots, s$ is uniquely defined by a non-decreasing subsequence $\mathcal{J}_{i}: 1 \leq j_{i_{1}} \leq j_{i_{2}} \leq \cdots \leq j_{i_{i}} \leq m$.

Similar statement holds for

$$
u_{i}=1^{\left(b_{i 1}\right)} 2^{b_{i 2}} \ldots n^{\left(b_{i n}\right)} \in \mathcal{D}_{\lambda_{i}}([\mathcal{P}]), \lambda_{i}=\sum_{j=1}^{n} b_{i j} .
$$

In particular (1.3.5) also write as following:
$\left(\begin{array}{c|ccc}w_{1} & 1^{\left(b_{11}\right)} 2^{\left(b_{12}\right)} & \ldots n^{\left(b_{1 n}\right)} \\ w_{2} & 1^{\left(b_{21}\right)} 2^{\left(b_{22}\right)} & \ldots n^{\left(b_{2 n}\right)} \\ \vdots & \vdots & \\ w_{s} & 1^{\left(b_{s 1}\right)} 2^{\left(b_{s 2}\right)} & \ldots n^{\left(b_{s n}\right)}\end{array}\right) \in \mathcal{D}_{\beta_{1}} \mathcal{F} \otimes \mathcal{D}_{\beta_{2}} \mathcal{F} \otimes \ldots \otimes \mathcal{D}_{\beta_{n}} \mathcal{F}$,
where $\beta_{j}=\sum_{i=1}^{S} b_{i j}$.

Example (1.3.1):

Let $w=\ell_{1} \ell_{2} \ell_{3} \ell_{4}^{(3)} \ell_{5}, u=1$ and $u^{\prime}=2^{(6)}$, from (1.3.3) and (1.3.4) we have

$$
\begin{aligned}
& \left(w \mid u u^{\prime}\right)=\left(\ell_{1} \mid 1\right)\left(\ell_{2} \ell_{3} \ell_{4}^{(3)} \ell_{5} \mid 2^{(6)}\right)+\left(\ell_{2} \mid 1\right)\left(\ell_{1} \ell_{3} \ell_{4}^{(3)} \ell_{5} \mid 2^{(6)}\right)+ \\
& \quad\left(\ell_{3} \mid 1\right)\left(\ell_{1} \ell_{2} \ell_{4}^{(3)} \ell_{5} \mid 2^{(6)}\right)+\left(\ell_{4} \mid 1\right)\left(\ell_{1} \ell_{2} \ell_{3} \ell_{4}^{(2)} \ell_{5} \mid 2^{(6)}\right)+ \\
& \left(\ell_{5} \mid 1\right)\left(\ell_{1} \ell_{2} \ell_{3} \ell_{4}^{(3)} \mid 2^{(6)}\right) \\
& =\left(\ell_{1} \mid 1\right)\left[\left(\ell_{2} \mid 2\right)\left(\ell_{3} \ell_{4}^{(3)} \ell_{5} \mid 2^{(5)}\right)\right]+\left(\ell_{2} \mid 1\right)\left[\left(\ell_{1} \mid 2\right)\left(\ell_{3} \ell_{4}^{(3)} \ell_{5} \mid 2^{(5)}\right)\right]+ \\
& \quad\left(\ell_{3} \mid 1\right)\left[\left(\ell_{1} \mid 2\right)\left(\ell_{2} \ell_{4}^{(3)} \ell_{5} \mid 2^{(5)}\right)\right]+\left(\ell_{4} \mid 1\right)\left[\left(\ell_{1} \mid 2\right)\left(\ell_{2} \ell_{3} \ell_{4}^{(2)} \ell_{5} \mid 2^{(5)}\right)\right]+ \\
& \quad\left(\ell_{5} \mid 1\right)\left[\left(\ell_{1} \mid 2\right)\left(\ell_{2} \ell_{3} \ell_{4}^{(3)} \mid 2^{(5)}\right)\right] \\
& =\left(\ell_{1} \mid 1\right)\left(\ell_{2} \mid 2\right)\left[\left(\ell_{3} \mid 2\right)\left(\ell_{4}^{(3)} \ell_{5} \mid 2^{(4)}\right)\right]+\left(\ell_{2} \mid 1\right)\left(\ell_{1} \mid 2\right)\left[\left(\ell_{3} \mid 2\right)\left(\ell_{4}^{(3)} \ell_{5} \mid 2^{(4)}\right)\right]+ \\
& \left(\ell_{3} \mid 1\right)\left(\ell_{1} \mid 2\right)\left[\left(\ell_{2} \mid 2\right)\left(\ell_{4}^{(3)} \ell_{5} \mid 2^{(4)}\right)\right]+\left(\ell_{4} \mid 1\right)\left(\ell_{1} \mid 2\right)\left[\left(\ell_{2} \mid 2\right)\left(\ell_{3} \ell_{4}^{(2)} \ell_{5} \mid 2^{(4)}\right)\right]+ \\
& \left(\ell_{5} \mid 1\right)\left(\ell_{1} \mid 2\right)\left[\left(\ell_{2} \mid 2\right)\left(\ell_{3} \ell_{4}^{(3)} \mid 2^{(4)}\right)\right] \\
& = \\
& \left(\ell_{1} \mid 1\right)\left(\ell_{2} \mid 2\right)\left(\ell_{3} \mid 2\right)\left[\left(\ell_{4}^{(3)} \mid 2^{(3)}\right)\left(\ell_{5} \mid 2\right)\right]+\left(\ell_{2} \mid 1\right)\left(\ell_{1} \mid 2\right)\left(\ell_{3} \mid 2\right) \\
& \\
& \\
& {\left[\left(\ell_{4}^{(3)} \mid 2^{(3)}\right)\left(\ell_{5} \mid 2\right)\right]+\left(\ell_{3} \mid 1\right)\left(\ell_{1} \mid 2\right)\left(\ell_{2} \mid 2\right)\left[\left(\ell_{4}^{(3)} \mid 2^{(3)}\right)\left(\ell_{5} \mid 2\right)\right]+} \\
& \\
& \left(\ell_{4} \mid 1\right)\left(\ell_{1} \mid 2\right)\left(\ell_{2} \mid 2\right)\left[\left(\ell_{3} \mid 2\right)\left(\ell_{4}^{(2)} \ell_{5} \mid 2^{(3)}\right)\right]+ \\
& \\
& \\
& \left(\ell_{5} \mid 1\right)\left(\ell_{1} \mid 2\right)\left(\ell_{2} \mid 2\right)\left[\left(\ell_{3} \mid 2\right)\left(\ell_{4}^{(3)} \mid 2^{(3)}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \left(\ell_{1} \mid 1\right)\left(\ell_{2} \mid 2\right)\left(\ell_{3} \mid 2\right)\left(\ell_{4} \mid 2\right)^{(3)}\left(\ell_{5} \mid 2\right)+\left(\ell_{2} \mid 1\right)\left(\ell_{1} \mid 2\right)\left(\ell_{3} \mid 2\right)\left(\ell_{4} \mid 2\right)^{(3)}\left(\ell_{5} \mid 2\right)+ \\
& \left(\ell_{3} \mid 1\right)\left(\ell_{1} \mid 2\right)\left(\ell_{2} \mid 2\right)\left(\ell_{4} \mid 2\right)^{(3)}\left(\ell_{5} \mid 2\right)+\left(\ell_{4} \mid 1\right)\left(\ell_{1} \mid 2\right)\left(\ell_{2} \mid 2\right)\left(\ell_{3} \mid 2\right)\left(\ell_{4} \mid 2\right)^{(2)} \\
& \left(\ell_{5} \mid 2\right)+\left(\ell_{5} \mid 1\right)\left(\ell_{1} \mid 2\right)\left(\ell_{2} \mid 2\right)\left(\ell_{3} \mid 2\right)\left(\ell_{4} \mid 2\right)^{(3)}
\end{aligned}
$$

Example (1.3.2):

If $\mathscr{L}=\left\{h_{1}, h_{2}, h_{3}, h_{4}, h_{5}\right\}, \mathcal{P}=\{1,2,3\}$,
$w_{1}=h_{1}^{(3)} h_{4} h_{5}^{(3)}, w_{2}=h_{1} h_{2}^{(2)} h_{3}^{(3)} h_{4} h_{5}, w_{3}=h_{2} h_{3} h_{5}^{(3)}, w_{4}=h_{1} h_{2} h_{4}^{(2)}$
$u_{1}=1^{(5)} 2^{(2)}, u_{2}=1^{(3)} 2^{(3)} 3^{(2)}, u_{3}=2^{(3)} 3^{(2)}$ and $u_{4}=1^{(2)} 3^{(2)}$
Then by stratify (1.3.6) we gain:

$$
\left(\begin{array}{l|l|c}
w_{1} & u_{1} \\
w_{2} & u_{2} \\
w_{3} & u_{3} \\
w_{4} & u_{4}
\end{array}\right)=\left(\begin{array}{cc|c}
h_{1} h_{1} h_{1} h_{4} h_{5} h_{5} h_{5} & 1111122 \\
h_{1} h_{2} h_{2} h_{3} h_{3} h_{3} h_{4} h_{5} & 11122233 \\
h_{2} h_{3} h_{5} h_{5} h_{5} & 22233 \\
h_{1} h_{2} h_{4} h_{4} & 1133
\end{array}\right) \in \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F}
$$

Definition (1.3.3): [22]

A double tableau $\left(\mathcal{T} \mid \mathcal{T}^{\prime}\right)$ as in (1.3.6); where w_{i}, u_{i} are basis words, is called co-standard if:
(1) $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{s}$, i.e. the sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$ is a partition.
(2) $\mathcal{T} \in \operatorname{Tab}_{\lambda}(\mathscr{L})$ and $\mathcal{T}^{\prime} \in \operatorname{Tab}_{\lambda}(\mathcal{P})$ are co-row and co-column standard.

Remark (1.3.4): [22]
The set of double tableaux

$$
\left\{\begin{aligned}
\left(\mathcal{T} \mid \mathcal{T}^{\prime}\right) & =\left(\begin{array}{c|c}
w_{1} & 1^{\left(\lambda_{1}\right)} \\
w_{2} & 2^{\left(\lambda_{2}\right)} \\
\vdots & \vdots \\
w_{s} & S^{\left(\lambda_{s}\right)}
\end{array}\right) \\
& =\left(w_{1} \otimes 1 \otimes \cdots \otimes 1\right)\left(1 \otimes w_{2} \otimes 1 \otimes \cdots \otimes 1\right) \cdots\left(1 \otimes \cdots \otimes 1 \otimes w_{s}\right) \\
& =w_{1} \otimes w_{2} \otimes \cdots \otimes w_{s} \in \mathcal{D}_{\lambda_{1}} \mathcal{F} \otimes \mathcal{D}_{\lambda_{2}} \mathcal{F} \otimes \cdots \otimes \mathcal{D}_{\lambda_{s}} \mathcal{F} ;
\end{aligned}\right.
$$

such that $w_{i} \in \mathcal{D}_{\lambda_{i}} \mathcal{F}$,
give a basis for $\mathcal{D}_{\lambda_{1}} \mathcal{F} \otimes \mathcal{D}_{\lambda_{2}} \mathcal{F} \otimes \ldots \otimes \mathcal{D}_{\lambda_{S}} \mathcal{F}$.

The following is a major result in Letter-place algebra:

Theorem (1.3.5): [20]
The set of all co-standard tableaux $\left(\mathcal{T} \mid \mathcal{T}^{\prime}\right) \in \mathcal{D}_{\beta_{1}} \mathcal{F} \otimes \mathcal{D}_{\beta_{2}} \mathcal{F} \otimes \ldots \otimes \mathcal{D}_{\beta_{n}} \mathcal{F}$ as described above form a basis for $\mathcal{D}_{\beta_{1}} \mathcal{F} \otimes \mathcal{D}_{\beta_{2}} \mathcal{F} \otimes \ldots \otimes \mathcal{D}_{\beta_{n}} \mathcal{F}$.

Example (1.3.6): [20]
The list below describes the shapes of all co-standard bi-tableaux in the case $\mathcal{D}_{\mathcal{p}} \otimes \mathcal{D}_{\mathcal{q}},\left(\right.$ i.e. $\mathcal{P}^{+}=\{1,2\}$).

where $\ell \leq p$.

To view how to employ the letter-place language to interpret the Weyl (Schur) map $d_{\lambda / \mu}^{\prime}\left(d_{\lambda / \mu}\right)$ and the box maps $\square_{\lambda / \mu}^{\prime}\left(\square_{\lambda / \mu}\right)$, we need the following definition:

Definition (1.3.7): [30]
In letter place algebra a linear operator ∂ is a positive derivation when

$$
\partial\left(w w^{\prime}\right)=\partial(w) w^{\prime}+w \partial\left(w^{\prime}\right)
$$

and negative derivation when

$$
\partial\left(w w^{\prime}\right)=\partial(w) w^{\prime}+(-1)^{|w|} w \partial\left(w^{\prime}\right)
$$

If ∂ is a derivation, we denote by ∂^{k} the k-th iterate of the operator ∂.
If ∂ is a negative derivation, then $\partial^{2}=0$ for $k>1$.
If ∂ is a positive derivation, one has:
$\partial^{k}\left(w w^{\prime}\right)=\sum_{i=0}^{k}\binom{k}{i} \partial^{k}(w) \partial^{k-1}\left(w^{\prime}\right)$.
A place polarization written $\partial_{a b}$ (read: replace the letter a by the letter b); where $a, b \in \mathcal{P}=\mathcal{P}^{+} \oplus \mathcal{P}^{-}$in uniquely defined by the following conditions:

1. $\partial_{b a}(a)=b$;
2. $\partial_{b a}(c)=0$; if $c \neq a$;
3. $\partial_{b a}\left(a^{(k)}\right)=b \cdot a^{(k-1)}$ if a is a positive letter;
4. When a and b are both of the same sign, $\partial_{a b}$ is a positive derivation, and when exactly one of the letters a and b is negative, $\partial_{a b}$ is a negative derivation,
5. When both a and b are positive, the following conditions uniquely define the k-th divided power $\partial_{b a}^{(k)}$ of the polarization $\partial_{b a}$:

$$
\begin{array}{ll}
\partial_{b a}^{(k)}\left(a^{(i)}\right)=a^{(i-k)} b^{(k)} & \text { if } i \geq k \\
\partial_{b a}^{(k)}\left(a^{(i)}\right)=0 & \text { if } i<k \\
\partial_{b a}^{(k)}\left(w w^{\prime}\right)=\sum_{i=0}^{k} \partial_{b a}^{(i)}(w) \partial_{b a}^{(k-i)}\left(w^{\prime}\right)
\end{array}
$$

6. The sequence $\partial_{b a}^{(k)}, k=1,2, \ldots$ is the unique sequence of linear operations satisfying the following conditions:
$\partial_{b a}^{(1)}=\partial_{b a}$
$\partial_{b a}^{(i)} \partial_{b a}^{(j)}=\binom{i+j}{i} \partial_{b a}^{(i+j)}$, for $i, j=1,2,3, \ldots$

Example (1.3.8): [23]

Let $\mathcal{P}^{+}=\{1,2\}, \mathcal{P}^{-}=\mathcal{L}^{-}=0$, then for $v \in \mathcal{D}_{a+b} \mathcal{F}$, the diagonalization map

$$
\begin{aligned}
& \Delta: \mathcal{D}_{a+b} \mathcal{F} \otimes \mathcal{D}_{0} \mathcal{F} \rightarrow \mathcal{D}_{a} \mathcal{F} \otimes \mathcal{D}_{b} \mathcal{F} \\
& v \otimes I \mapsto \sum_{(v)} v_{(1)} \otimes v_{(2)}=\Delta_{(a, b)}(v)
\end{aligned}
$$

can be written in letter place notation as:

$$
\partial_{21}^{(b)}\left(\left(v \mid 1^{(a+b)}\right)\right)=\left(v \mid 1^{(a)} 2^{(b)}\right)
$$

Similarly, if $w \in \mathcal{D}_{p+k} \mathcal{F}, w^{\prime} \in \mathcal{D}_{q-k} \mathcal{F}$, then the box map.

$$
\begin{aligned}
& \square: \mathcal{D}_{p+k} \mathcal{F} \otimes \mathcal{D}_{\mathcal{Q}-k} \mathcal{F} \rightarrow \mathcal{D}_{\mathfrak{p}} \mathcal{F} \otimes \mathcal{D}_{q} \mathcal{F} \\
& w \otimes w^{\prime} \rightarrow \sum_{(w)} w_{(1)} \otimes w_{(2)} w^{\prime}
\end{aligned}
$$

in letter place notations becomes

$$
\partial_{21}^{(k)}\left(\begin{array}{c|c}
w & 1^{(p+k)} \\
w^{\prime} & 2^{(q-k)}
\end{array}\right)=\left(\begin{array}{c|c}
w & 1^{(p)} 2^{(k)} \\
w^{\prime} & 2^{(q-k)}
\end{array}\right)
$$

As in [16], if $\mathcal{P}^{-}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$ for $w \in \mathcal{D}_{\mathcal{p}} \mathcal{F}$, we have:

$$
\begin{aligned}
\left(w \mid 1^{\prime} 2^{\prime} \ldots n^{\prime}\right) & \cong \sum_{(w)} w_{(1)} \otimes \ldots \otimes w_{(n)} \\
& =\sum\left(w_{(1)} \mid 1^{\prime}\right) \ldots\left(w_{(n)} \mid n^{\prime}\right) \in \underbrace{\Lambda^{1} \mathcal{F} \otimes \ldots \otimes \Lambda^{1} \mathcal{F}}_{n-\text { times }}
\end{aligned}
$$

Now consider the partition

And the Weyl map

$$
d_{\lambda / \mu}^{\prime}: \mathcal{D}_{p} \otimes \mathcal{D}_{q} \rightarrow \underbrace{\Lambda^{1} \otimes \ldots \otimes \Lambda^{1}}_{t} \otimes \underbrace{\Lambda^{2} \otimes \ldots \otimes \Lambda^{2}}_{q-t} \otimes \underbrace{\Lambda^{1} \otimes \ldots \otimes \Lambda^{1}}_{p-q+t} .
$$

If we take a double standard tableau, say $\left(\begin{array}{c|c}w & 1^{(p)} \\ w^{\prime(k)} & 2^{(q-k)}\end{array}\right)$, in $\mathcal{D}_{p} \otimes \mathcal{D}_{q}, d^{\prime}{ }_{\lambda / \mu}$ can be defined as the composition of place polarizations, from positive places $\{1,2\}$ to negative places $\mathcal{P}^{-}=\left\{1^{\prime}, 2^{\prime}, \ldots,(\mathcal{p}+t)^{\prime}\right\}$ as:

$$
d_{\lambda / \mu}^{\prime}=\partial_{\mathcal{q}^{\prime}, 2} \ldots \partial_{1^{\prime}, 2} \partial_{(\mathfrak{p}+t)^{\prime}, 1} \ldots \partial_{(t+1)^{\prime}, 1}
$$

where, $\partial_{u / v}$ stands for the place polarization from v to negative place u^{\prime}.

Example (1.3.9):

Let $\mathcal{P}=\mathcal{P}^{+}=\{1,2,3\}$, for $w \in \mathcal{D}_{8} \mathcal{F}, w^{\prime} \in \mathcal{D}_{5} \mathcal{F}$ and $w^{\prime \prime} \in \mathcal{D}_{3} \mathcal{F}$, we have

$$
\begin{aligned}
\partial_{21}^{(k)}\left(\begin{array}{c|c|c}
w \\
w^{\prime} & 1^{(8)} 2^{(2)} 3^{(1)} \\
2^{\prime \prime} & 2^{(3)} 3^{(1)} \\
3^{(1)}
\end{array}\right) & =\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(8-k)} 2^{(k)} 2^{(2)} 3^{(1)} \\
w^{\prime \prime} & 3^{(1)} \\
3^{(1)}
\end{array}\right) \\
& =\binom{k+2}{k}\left(\begin{array}{c|c}
w & 1^{(8-k)} 2^{(k+2)} 3^{(1)} \\
w^{\prime} & 2^{(3)} 3^{(1)} \\
w^{\prime \prime} & 3^{(1)}
\end{array}\right)
\end{aligned}
$$

Example (1.3.10):

Let $\lambda=(8,7,3)$, then $d_{\lambda}^{\prime}\left(\begin{array}{c|c}w^{\prime} & 1^{(8)} \\ w^{\prime} & 2^{(7)} \\ w^{\prime \prime} & 3^{(3)}\end{array}\right)=\left(\begin{array}{c|c}w^{\prime} & 1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime} 5^{\prime} 6^{\prime} 7^{\prime} 8^{\prime} \\ w^{\prime} & 1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime} 5^{\prime} 6^{\prime} 7^{\prime} \\ w^{\prime \prime} & 1^{\prime} 2^{\prime} 3^{\prime}\end{array}\right)$; where
$d_{\lambda}^{\prime}=\partial_{3^{\prime}{ }_{3}} \partial_{2^{\prime}{ }_{3}} \partial_{1^{\prime} 3} \partial_{7^{\prime} 2} \partial_{6^{\prime} 2} \partial_{5^{\prime}{ }^{\prime}} \partial_{4^{\prime} 2} \partial_{3^{\prime} 2^{\prime}} \partial_{2^{\prime}{ }_{2}} \partial_{1^{\prime}{ }^{\prime}} \partial_{8^{\prime} 1^{\prime}} \partial_{7^{\prime} 1} \partial_{6^{\prime} 1} \partial_{5^{\prime} 1} \partial_{4^{\prime} 1} \partial_{3^{\prime} 1} \partial_{2^{\prime} 1} \partial_{1^{\prime} 1}$.

Proposition (1.3.11): [15] (Capelli identities)

Let $i, j, k, \ell \in \mathcal{P}^{+}$, then the divided powers of the place polarizations satisfy the following identities:
(1) If $k \neq j$, then

$$
\begin{aligned}
& \partial_{i j}^{(r)} \partial_{j \ell}^{(s)}=\sum_{\alpha \geq 0} \partial_{j \ell}^{(s-\alpha)} \partial_{i j}^{(r-\alpha)} \partial_{i k}^{(\alpha)} \\
& \partial_{j \ell}^{(s)} \partial_{i j}^{(r)}=\sum_{\alpha \geq 0}(-1)^{\alpha} \partial_{i j}^{(r-\alpha)} \partial_{j \ell}^{(s-\alpha)} \partial_{i k}^{(\alpha)}
\end{aligned}
$$

(2) If $i \neq k$ and $j \neq \ell$ then

$$
\partial_{i k}^{(s)} \partial_{i \ell}^{(r)}=\partial_{i \ell}^{(r)} \partial_{i k}^{(s)}
$$

In our work, we need the following Capelli identities relations:

- $Z_{32} z_{31} z(v)=z_{32}^{(2)} y \partial_{21}(v)-z_{21} x \partial_{32}^{(2)}(v)$
- $Z_{31} Z_{21}^{(b)} x(v)=-Z_{21}^{(b+1)} x \partial_{32}(v)+Z_{32} y \partial_{21}^{(b+1)}(v)$
- $Z_{32} Z_{31} z Z_{21}^{(b)} x(v)=(b-1) Z_{32}^{(2)} y Z_{21}^{(b+1)} x(v)-Z_{21} x Z_{32}^{(2)} Z_{21}^{(b)} x(v)$
- $Z_{32}^{(2)} Z_{21}^{(b)} x(v)=Z_{21}^{(b)} x \partial_{32}^{(2)}(v)+Z_{21}^{(b-1)} x \partial_{32} \partial_{31}(v)+Z_{21}^{(b-2)} x \partial_{31}^{(2)}(v)$
- $Z_{32}^{(2)} z_{31} z_{21}^{(b)} x(v)=(b-2) Z_{32}^{(3)} y z_{21}^{(b+1)} x(v)-z_{21} x Z_{32}^{(3)} Z_{21}^{(b)} x(v)$

Remark (1.3.12): [9]

From the equalities in Proposition (1.3.11,(1)), for $r=s=1, i=3, j=2$ and $k=1$, we have $\partial_{32} \partial_{21}-\partial_{21} \partial_{32}=\partial_{31}$.

1.4 The differential Bar complex

This section illustrates one of the basic construction of homological algebra which is the Bar resolution and its generalization which is called differential Bar complex, frequently used in the sequel; where we also review the characteristic-free projective resolution of the two-rowed Weyl modules obtained in [13] and [15] by using differential Bar complex technique.

From [15] we will borrow the following complex:
Let Λ be an algebra over the commutative ring \mathcal{R}, and \mathcal{F} a Λ-module. The Bar complex is the following:

$$
\underbrace{\Lambda \otimes \Lambda \otimes \ldots \otimes \mathcal{F}}_{t-\text { times }} \xrightarrow{\eta_{t}} \underbrace{\Lambda \otimes \Lambda \otimes \ldots \otimes \Lambda \otimes \mathcal{F}}_{t-1 \text {-times }} \xrightarrow{\eta_{t-1}} \cdots \rightarrow \Lambda \otimes \mathcal{F} \xrightarrow{\eta_{1}} \mathcal{F} ;
$$

where η_{1} is simply the action of Λ on \mathcal{F} and in general

$$
\begin{align*}
& \eta_{\ell}\left(\lambda_{1} \otimes \lambda_{2} \otimes \ldots \otimes \lambda_{\ell} \otimes f\right)= \\
& =\sum_{j=1}^{\ell-1}(-1)^{j-\ell} \lambda_{1} \otimes \lambda_{2} \otimes \ldots \otimes \lambda_{j} \lambda_{j+1} \otimes \ldots \otimes \lambda_{\ell} \otimes f+(-1)^{\ell-1} \lambda_{1} \otimes \lambda_{2} \otimes \ldots \otimes \lambda_{\ell-1} \otimes \lambda_{\ell} f \tag{1.4.1}
\end{align*}
$$

Let $\Lambda(\mathcal{S})$ denote the exterior algebra over \mathbb{Z} on a set of free generators \mathcal{S} called the separators, let \mathcal{A} be an associative algebra with identity.
The algebra $\Lambda(\mathcal{S})$ has a natural Z_{2}-grading: if m is the product of an even number of generators, we set $|m|=0$ otherwise $|m|=1$.

Definition (1.4.1): [13]
The free product of the algebra \mathcal{A} and the algebra $\Lambda(\mathcal{S})$ will be called the algebra Bar on the algebra \mathcal{A} with set separator's \mathcal{S} and denoted by
$\operatorname{Bar}(\mathcal{A} ; \mathcal{S})=\widetilde{\Lambda}$. By an element of $\widetilde{\Lambda}$ is a \mathbb{Z}-linear combination of elements of the form:
$\tilde{\lambda}=w_{1} m_{1} w_{2} m_{2} \ldots w_{k} m_{k}$,
with $w_{i} \in \mathcal{A}, m_{i}$ non zero monomials in $\Lambda(\mathcal{S})$; notice that we may have $w_{i}=1_{\mathcal{A}}, m_{\mathfrak{j}} \in \Lambda^{0}(\mathcal{S})=\mathbb{Z}$, moreover $\widetilde{\Lambda}$ inherits a Z_{2}-grading defined by:

$$
|\widetilde{\lambda}|=0 \text { if }\left|m_{1} m_{2} \cdots m_{k}\right|=0 \text { and }|\widetilde{\lambda}|=1 \text { if }\left|m_{1} m_{2} \cdots m_{k}\right|=1
$$

Now for $\mathcal{T} \subseteq \mathcal{S}$ a T -grading called $\operatorname{Bar}(\mathcal{A} ; \mathcal{S} ; \mathcal{T}, \bullet)$ of the underlying module of the algebra $\widetilde{\Lambda}$ is obtained by considering all elements $\widetilde{\lambda}$ in (1.4.2) such that m_{j} are monomials just in \mathcal{T}. In particular the submodule $\operatorname{Bar}(\mathcal{A} ; \mathcal{S} ; \mathcal{T}, i)$ of \mathcal{T}-degree i is spanned by all elements $\tilde{\lambda}$ in (1.4.2) such that i is the total number of occurrences of separators in the set \mathcal{T} appearing in the sequence $\left(m_{1} m_{2} \cdots m_{k}\right)$.

Recall that for every separator x, there exists a unique anti-derivation ∂_{x} of algebra $\Lambda(\mathcal{S})$, such that $\partial_{x}(x)=1$; where 1 is the identity of the exterior algebra $\Lambda(\mathcal{S})$, and $\partial_{x}(y)=0$ for every $y \in \mathcal{S}$; where $y \neq x$. Recall also that $\left(\partial_{x}\right)^{(2)}=0$ and $\partial_{x} \partial_{y}=-\partial_{y} \partial_{x}$.

The anti-derivation ∂_{x} uniquely extends to anti-derivation of Z_{2}-graded algebra $\widetilde{\Lambda}$, again denoted by ∂_{x} defined as follows:

Let $\tilde{\lambda}$ as in (1.4.2), set $\partial_{x}(x)=1_{\tilde{\Lambda}}$, and

$$
\begin{aligned}
\partial_{x}(\widetilde{\lambda})= & w_{1} \partial_{x}\left(m_{1}\right) w_{2} m_{2} \ldots w_{k} m_{k \hbar}+(-1)^{\left|m_{1}\right|} w_{1} m_{1} w_{2} \partial_{x}\left(m_{2}\right) \ldots w_{\hbar} m_{\hbar}+ \\
& (-1)^{\sum_{i=1}^{k-1}|m|} w_{1} m_{1} w_{2} m_{2} \ldots w_{k} \partial_{x}\left(m_{k}\right),
\end{aligned}
$$

so the anti-derivation ∂_{x} is well defined on $\widetilde{\Lambda}$ and the properties $\left(\partial_{x}\right)^{(2)}=0$, $\partial_{x} \partial_{y}=-\partial_{y} \partial_{x}$ still hold.

Definition (1.4.2): [15]

If \mathcal{T} is a non-empty finite subset of \mathcal{S}, the operator $\partial_{\mathcal{T}}=\sum_{x \in \mathcal{T}} \partial_{x}$ is called the \mathcal{T}-boundary operator, i.e. we have for $i=0,1,2, \ldots$

$$
\cdots \rightarrow \operatorname{Bar}(\mathcal{A} ; \mathcal{S} ; \mathcal{J}, i+1) \xrightarrow{\partial_{\mathcal{T}, i}} \operatorname{Bar}(\mathcal{A} ; \mathcal{S} ; \mathcal{J}, i) \rightarrow \cdots
$$

Definition (1.4.3): [13]

Let \mathcal{M} be \mathcal{A}-module and let $w(v)$ denoted the action of $w \in \mathcal{A}$ on $v \in \mathcal{M}$. The free Bar module of the $\boldsymbol{\mathcal { A }}$-module $\boldsymbol{\mathcal { M }}$ with a set of separators \boldsymbol{S} denoted by $\tilde{\mathcal{M}}=\operatorname{Bar}(\mathcal{M}, \mathcal{A} ; \mathcal{S})$ is the $\widetilde{\Lambda}-\operatorname{modul} \widetilde{\Lambda} \otimes_{\Lambda} \mathcal{M}$.

Notice that: $\widetilde{\mathcal{M}}$ is spanned by all elements of form

$$
\tilde{m}=w_{1} m_{1} w_{2} m_{2} \ldots w_{k} m_{k} \otimes v=\tilde{\lambda} \otimes v
$$

where, if $m_{k}=1_{\Lambda(\delta)}$, then

$$
\tilde{m}=w_{1} m_{1} w_{2} m_{2} \ldots w_{k-1} m_{k-1} \otimes w_{k}(v)
$$

As for the case of ∂_{x} extending to $\widetilde{\Lambda}$, again we have that ∂_{x} gives a welldefined anti-derivation on $\widetilde{\mathcal{M}}$, still denoted by ∂_{x} and defined as follows:

$$
\partial_{x}(\tilde{m})=\partial_{x}(\tilde{\lambda}) \otimes v
$$

At this point it is clear that, given $\mathcal{T} \subseteq S, \partial_{\mathcal{T}}=\sum_{x \in \mathcal{T}} \partial_{x}$ as in the above definition, we can also define the complex $\operatorname{Bar}(\mathcal{M}, \mathcal{A} ; \mathcal{S}, \mathcal{T}, \bullet)=\widetilde{\mathcal{M}}_{\bullet}$.

$$
\cdots \rightarrow \tilde{\mathcal{M}}_{i+1} \xrightarrow{\partial_{\mathcal{T}}} \tilde{\mathcal{M}}_{i} \rightarrow \cdots
$$

The following example is given in [13] and [15].

Example (1.4.4):

Let $\mathcal{S}=\{x\}$. Then $\widetilde{\mathcal{M}}$ is spanned by all elements of the form

$$
\tilde{m}=w_{1} x w_{2} x \ldots w_{i} x \otimes v
$$

and the derivation ∂_{x} is computed as follows:

$$
\begin{aligned}
\partial_{x}(\tilde{m})= & w_{1} w_{2} x \ldots w_{i} x \otimes v-w_{1} x w_{2} w_{3} x \ldots w_{i} x \otimes v+\cdots+ \\
& (-1)^{i-1} w_{1} x w_{2} x \ldots w_{i-1} x \otimes w_{i}(v)
\end{aligned}
$$

Introduction

This chapter divided into two sections, in the first section we study the resolution of two-rowed Weyl module and discuss an application for it in the case of partition $(8,7)$ and find the terms of this resolution and prove its exactness. However, the resolution of the three rowed Weyl module presented in the second section.

2.1 Resolution for the two-rowed Weyl module

In this section, we will survey the resolution for the two-rowed Weyl module $\mathcal{K}_{\lambda / \mu} \mathcal{F}$ as it is described in [15] and [16]; where

From condition (*) in the Definitions (1.2.1) and condition (**) in the Definition (1.2.5) we recall that for $\mathcal{K}_{\lambda / \mu} \mathcal{F}=\operatorname{Im}\left(d_{\lambda / \mu}^{\prime}\right)$ we have

$$
\begin{equation*}
\sum \mathcal{D}_{\mathfrak{P}+\kappa} \otimes \mathcal{D}_{q-\kappa} \xrightarrow{\square} \mathcal{D}_{\mathcal{p}} \otimes \mathcal{D}_{q} \xrightarrow{d^{\prime} \lambda / \mu} \mathcal{K}_{\lambda / \mu} \rightarrow 0 \tag{2.1.1}
\end{equation*}
$$

Using letter place notation, so the maps mention in (2.1.1) can be described as follows:

$$
\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} \left\lvert\, \begin{array}{l}
1^{(p+k)} \\
2^{(q-k)}
\end{array}\right.\right) \xrightarrow{\partial_{21}^{(k)}}\left(\begin{array}{c}
w^{w} \\
w^{\prime}
\end{array}{\begin{array}{c}
1^{(p)} \\
2^{(q-k)}
\end{array}}_{2^{(k)}}^{q^{(k-k}}\right) \rightarrow \sum_{w}\left(\begin{array}{c}
w_{(1)} \\
w^{\prime} w_{(2)}
\end{array} \left\lvert\, \begin{array}{c}
(t+1)^{\prime}(t+2)^{\prime} \ldots(p+t)^{\prime} \\
1^{\prime} 2^{\prime} 3^{\prime} \ldots q^{\prime}
\end{array}\right.\right) ;
$$

where

$$
w \otimes w^{\prime} \in \mathcal{D}_{p+k} \otimes \mathcal{D}_{q-k} \quad, \quad \square=\sum_{k=t+1}^{q} \partial_{21}^{(k)},
$$

and

$$
d_{\lambda / \mu}^{\prime}=\partial_{q^{\prime} 2} \ldots \partial_{1^{\prime} 2} \partial_{(p+t)^{\prime} 1} \ldots \partial_{(t+1)^{\prime} 1}
$$

is the composition of place polarizations, from positive places $\{1,2\}$ to negative place $\left\{1^{\prime}, 2^{\prime}, \ldots,(p+t)^{\prime}\right\}$.

In specific, \square sends an element $x \otimes y$ of $\mathcal{D}_{\mathfrak{p}+k} \otimes \mathcal{D}_{\mathcal{q}-k}$ to $\sum x_{\mathcal{p}} \otimes x_{k}^{\prime} \mathcal{y}$; where $\sum x_{\mathcal{p}} \otimes x_{k}^{\prime}$ is the component of the diagonal of x in $\mathcal{D}_{\mathcal{p}} \otimes \mathcal{D}_{k}$, [2].

Definition (2.1.1):

Let Z_{21} be the free generator of divided power algebra $\mathcal{D}\left(Z_{21}\right)$ in one generator. The divided power element $z_{21}^{(k)}$ of degree k of the free generator Z_{21} acts on $\mathcal{D}_{\mathfrak{p}+\hbar} \otimes \mathcal{D}_{q-k}$ by place polarization of degree k from place 1 to place 2 .

In specific, the (graded) algebra (with identity). $\mathcal{A}=\mathcal{D}\left(Z_{21}\right)$ act on the graded module $\mathcal{M}=\mathcal{D}_{\mathfrak{p}+\kappa} \otimes \mathcal{D}_{q-k}=\sum \mathcal{M}_{q-k}$ (the degree of the second factor determines the grading), [15].

Hence \mathcal{M} is a (graded) left \mathcal{A}-module; where for $w=Z_{21}^{(\kappa)} \in \mathcal{A}$ and $v \in \mathcal{D}_{\beta_{1}} \otimes \mathcal{D}_{\beta_{2}}$, so we have:

$$
w(v)=z_{21}^{(\kappa)}(v)=\partial_{21}^{(\kappa)}(v)
$$

If we take $\left(t^{+}\right)$graded strand of degree q

$$
\mathcal{M}_{:}: 0 \longrightarrow \mathcal{M}_{q-t} \xrightarrow{\partial_{s}} \ldots \longrightarrow \mathcal{M}_{e} \xrightarrow{\partial_{s}} \mathcal{M}_{1} \xrightarrow{\partial_{s}} \mathcal{M}_{0},
$$

of the normalized Bar complex $\operatorname{Bar}(\mathcal{M}, \mathcal{A} ; \mathcal{S}, \bullet)$; where $\mathcal{S}=\{x\}$ as illustrated in the example (1.4.4)

So \mathcal{M}. is the following complex
$\sum_{k_{i} \geq 0} z_{21}^{\left(t+k_{1}\right)} x z_{21}^{\left(k_{2}\right)} x \ldots z_{21}^{\left(k_{e}\right)} x \mathcal{D}_{p+t+|k|} \otimes \mathcal{D}_{q-t-|k|}$
$\xrightarrow{d_{e}} \sum_{h_{i} \geq 0} z_{21}^{\left(t+k_{1}\right)} x z_{21}^{\left(k_{2}\right)} x \ldots z_{21}^{\left(k_{e-1}\right)} x \mathcal{D}_{p+t+|k|} \otimes \mathcal{D}_{\mathcal{q}_{-t-}-|k|} \xrightarrow{d_{e-1}} \ldots$
$\xrightarrow{d_{1}} \sum_{k_{i} \geq 0} Z_{21}^{(t+k)} x \mathcal{D}_{p+t+k} \otimes \mathcal{D}_{q-t-k} \xrightarrow{d_{0}} \mathcal{D}_{p} \otimes \mathcal{D}_{q} ;$
where $|k|=\sum k_{i}$ and d_{e} is the boundary operator ∂_{x}.

Notice that (2.1.2) describes a left complex $\left(\partial_{x}^{2}=0\right)$ over the Weyl module in terms of Bar complex and letter-place algebra, moreover, the separator x
disappears between a $Z_{a b}^{(t)}$ and elements in the tensor product of divided powers, this means $\partial_{a b}^{(t)}$ is applied to that tensor product, [16].

Theorem (2.1.2): [16]
The complex (2.1.2) is a resolution of $\mathcal{K}_{\lambda / \mu} \mathcal{F}$.

Notice that the proof is based on the construction of a contracting homotopy [32] $\left\{\mathcal{S}_{i}\right\}$ which defined as follows:
$\mathcal{S}_{0}: \mathcal{D}_{p} \otimes \mathcal{D}_{q} \longrightarrow \sum_{k>0} Z^{(t+k)} x \mathcal{D}_{p+t+k} \otimes \mathcal{D}_{q-t-k}$
$\left(\begin{array}{cc}w \\ \left.w^{\prime}\right|_{2^{(q-k)}} ^{1^{(p)}} & 2^{(k)}\end{array}\right) \longrightarrow\left\{\begin{array}{cc}0 & ; \text { if } k \leq t \\ z_{21}^{(k)} x\binom{w}{w^{\prime}| |_{2^{(q-k)}}^{(p+k)}} & ; \text { if } k>t\end{array}\right.$

And for the higher dimensions as

$$
\begin{aligned}
& \mathcal{S}_{\ell-1}: \sum_{k_{i}>0} Z_{21}^{\left(t+k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x \ldots Z_{21}^{\left(k_{\ell-1}\right)} x \mathcal{D}_{p+t+|k|} \otimes \mathcal{D}_{q-t-|k|} \\
& \longrightarrow Z_{21}^{\left(t+k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x \ldots Z_{21}^{\left(k_{\ell-1}\right)} x Z_{21}^{\left(k_{\ell}\right)} x \mathcal{D}_{p+t+|k|} \otimes \mathcal{D}_{q-t-|k|} \\
& Z_{21}^{\left(t+k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x \ldots Z_{21}^{\left(k_{\ell-1}\right)} x\left(\begin{array}{c|c}
w & 1^{(p+t+|k|)} \quad 2^{(m)} \\
w^{\prime} & 2^{(q-t-|k|-m)}
\end{array}\right) \\
& \longrightarrow\left\{\begin{array}{c}
0 \\
; \text { if } m=0 \\
Z_{21}^{\left(t+k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x \ldots Z_{21}^{\left(k_{\ell-1}\right)} x Z_{21}^{(m)} x\binom{w}{w^{\prime}| |_{(q-t-|k|-m)}^{(q-t+|k|+m)}} ; \text { if } m>0
\end{array}\right.
\end{aligned}
$$

The authors in [15] write the modules of the resolution as \mathcal{M}_{i} for $i=0,1, \ldots, q-t$, with $\mathcal{M}_{0}=\mathcal{D}_{p} \otimes \mathcal{D}_{q}$, and
$\mathcal{M}_{i}=Z_{21}^{\left(t+k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x \ldots Z_{21}^{\left(k_{i}\right)} x \mathcal{D}_{p+t+|k|} \otimes \mathcal{D}_{q-t-|k|}$, for $i \geq 1$

The following example clarifies the above Theorem.

Example (2.1.3):

Consider the case of the partition $(8,7)$.
The terms of the characteristic-free resolution are
$\mathcal{M}_{0}=\mathcal{D}_{8} \otimes \mathcal{D}_{7}$
$\mathcal{M}_{1}=Z_{21}^{(1)} x \mathcal{D}_{9} \otimes \mathcal{D}_{6} \oplus Z_{21}^{(2)} x \mathcal{D}_{10} \otimes \mathcal{D}_{5} \oplus Z_{21}^{(3)} x \mathcal{D}_{11} \otimes \mathcal{D}_{4} \oplus Z_{21}^{(4)} x \mathcal{D}_{12} \otimes \mathcal{D}_{3} \oplus$ $z_{21}^{(5)} x \mathcal{D}_{13} \otimes \mathcal{D}_{2} \oplus Z_{21}^{(6)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus Z_{21}^{(7)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0}$
$\mathcal{M}_{2}=Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{10} \otimes \mathcal{D}_{5} \oplus Z_{21}^{(2)} x Z_{21}^{(1)} x \mathcal{D}_{11} \otimes \mathcal{D}_{4} \oplus Z_{21}^{(1)} x Z_{21}^{(2)} x \mathcal{D}_{11} \otimes \mathcal{D}_{4} \oplus$ $z_{21}^{(2)} x Z_{21}^{(2)} x \mathcal{D}_{12} \otimes \mathcal{D}_{3} \oplus z_{21}^{(3)} x Z_{21}^{(1)} x \mathcal{D}_{12} \otimes \mathcal{D}_{3} \oplus z_{21}^{(1)} x z_{21}^{(3)} x \mathcal{D}_{12} \otimes \mathcal{D}_{3} \oplus$ $Z_{21}^{(4)} x Z_{21}^{(1)} x \mathcal{D}_{13} \otimes \mathcal{D}_{2} \oplus Z_{21}^{(1)} x Z_{21}^{(4)} x \mathcal{D}_{13} \otimes \mathcal{D}_{2} \oplus Z_{21}^{(2)} x Z_{21}^{(3)} x \mathcal{D}_{13} \otimes \mathcal{D}_{2} \oplus$ $z_{21}^{(3)} x z_{21}^{(2)} x \mathcal{D}_{13} \otimes \mathcal{D}_{2} \oplus z_{21}^{(5)} x z_{21}^{(1)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus z_{21}^{(1)} x z_{21}^{(5)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus$ $z_{21}^{(3)} x Z_{21}^{(3)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus Z_{21}^{(2)} x Z_{21}^{(4)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus Z_{21}^{(4)} x Z_{21}^{(2)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus$ $z_{21}^{(6)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(1)} x Z_{21}^{(6)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(5)} x Z_{21}^{(2)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus$ $z_{21}^{(2)} x z_{21}^{(5)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus z_{21}^{(3)} x z_{21}^{(4)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus z_{21}^{(4)} x z_{21}^{(3)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0}$

$$
\mathcal{M}_{3}=Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{11} \otimes \mathcal{D}_{4} \oplus Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{12} \otimes \mathcal{D}_{3} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x \mathcal{D}_{12} \otimes \mathcal{D}_{3} \oplus Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x \mathcal{D}_{12} \otimes \mathcal{D}_{3} \oplus
$$

$$
Z_{21}^{(3)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{13} \otimes \mathcal{D}_{2} \oplus Z_{21}^{(1)} x Z_{21}^{(3)} x z_{21}^{(1)} x \mathcal{D}_{13} \otimes \mathcal{D}_{2} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(3)} x \mathcal{D}_{13} \otimes \mathcal{D}_{2} \oplus Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21}^{(1)} x \mathcal{D}_{13} \otimes \mathcal{D}_{2} \oplus
$$

$$
Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(2)} x \mathcal{D}_{13} \otimes \mathcal{D}_{2} \oplus Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(2)} x \mathcal{D}_{13} \otimes \mathcal{D}_{2} \oplus
$$

$$
Z_{21}^{(4)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus Z_{21}^{(1)} x Z_{21}^{(4)} x Z_{21}^{(1)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(4)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus Z_{21}^{(3)} x z_{21}^{(2)} x Z_{21}^{(1)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus
$$

$$
Z_{21}^{(3)} x Z_{21}^{(1)} x Z_{21}^{(2)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus Z_{21}^{(2)} x Z_{21}^{(3)} x Z_{21}^{(1)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus
$$

$$
z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(3)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(3)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(2)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21}^{(2)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus
$$

$$
\begin{aligned}
& Z_{21}^{(5)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(1)} x Z_{21}^{(5)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(5)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21}^{(3)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(2)} x Z_{21}^{(3)} x Z_{21}^{(2)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(3)} x Z_{21}^{(2)} x Z_{21}^{(2)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(3)} x Z_{21}^{(3)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(3)} x Z_{21}^{(1)} x Z_{21}^{(3)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(3)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(2)} x Z_{21}^{(4)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(4)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(4)} x Z_{21}^{(2)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(4)} x Z_{21}^{(1)} x Z_{21}^{(2)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(1)} x Z_{21}^{(4)} x Z_{21}^{(2)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(4)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \\
& \mathcal{M}_{4}=Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{12} \otimes \mathcal{D}_{3} \oplus Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{13} \otimes \mathcal{D}_{2} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{13} \otimes \mathcal{D}_{2} \oplus Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x \mathcal{D}_{13} \otimes \mathcal{D}_{2} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x \mathcal{D}_{13} \otimes \mathcal{D}_{2} \oplus Z_{21}^{(3)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(1)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(3)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus \\
& Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21}^{(1)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(2)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(2)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus Z_{21}^{(4)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(4)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(4)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(4)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(2)} x Z_{21}^{(3)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(3)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(3)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(3)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(3)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(3)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(2)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(3)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(1)} x Z_{21}^{(2)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(2)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(3)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus
\end{aligned}
$$

$$
\begin{aligned}
& Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(2)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(2)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21}^{(2)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0}
\end{aligned}
$$

$\mathcal{M}_{5}=Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{13} \otimes \mathcal{D}_{2} \oplus$

$$
Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus
$$

$$
Z_{21}^{(3)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(3)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus
$$

$$
Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus
$$

$$
Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus
$$

$$
Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus
$$

$$
Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(2)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus
$$

$$
Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(2)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0}
$$

$$
\begin{aligned}
\mathcal{M}_{6}= & Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{14} \otimes \mathcal{D}_{1} \oplus \\
& Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \oplus \\
& Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \\
\mathcal{M}_{7}= & Z_{21}^{(1)} x \mathcal{D}_{15} \otimes \mathcal{D}_{0}
\end{aligned}
$$

The homotopies $\left\{\mathcal{S}_{i}\right\}$; where $i=0,1,2, \ldots, 6$ are

$$
\mathcal{S}_{0}: \mathcal{D}_{8} \otimes \mathcal{D}_{7} \longrightarrow \sum_{k>0} Z_{21}^{(k)} x \mathcal{D}_{8+k} \otimes \mathcal{D}_{7-k}
$$

$$
\mathcal{S}_{0}\left(\left(\begin{array}{cc}
w & 1^{(8)} \\
w^{\prime} & 2^{(k-k)}
\end{array}\right)=\left\{\begin{array}{cl}
0 & ; \text { if } k \leq 0 \\
z_{21}^{(k)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} \left\lvert\, \begin{array}{l}
1^{(8+k)} \\
2^{(7-k)}
\end{array}\right.\right) & ; \text { if } k=1,2,3,4,5,6,7
\end{array}\right.\right.
$$

$$
\mathcal{S}_{1}: \sum_{k>0} Z_{21}^{(k)} x \mathcal{D}_{8+k} \otimes \mathcal{D}_{7-k} \longrightarrow Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x \mathcal{D}_{8+k} \otimes \mathcal{D}_{7-k}
$$

$$
\delta_{1}\left(z_{21}^{(k)} x\left(\begin{array}{c|cc}
w & 1^{(8+k)} & 2^{(m)} \\
w^{\prime} & 2^{(7-k-m)} &
\end{array}\right)\right.
$$

$$
=\left\{\begin{array}{cl}
0 & \text {; if } m=0 \\
Z_{21}^{(k)} x Z_{21}^{(m)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} \left\lvert\, \begin{array}{l}
1^{(8+k+m)} \\
2^{(7-k-m)}
\end{array}\right.\right) & ; \text { if } m=1,2,3,4,5,6
\end{array}\right.
$$

$$
\mathcal{S}_{2}: \sum_{k_{i}>0} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x \mathcal{D}_{8+|k|} \otimes \mathcal{D}_{7-|k|} \longrightarrow Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x \mathcal{D}_{8+|k|} \otimes \mathcal{D}_{7-|k|}
$$

$$
\begin{aligned}
& \mathcal{S}_{2}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|)} \\
w^{\prime} & 2^{(m-|k|-m)}
\end{array} \quad\right)\right. \\
& =\left\{\begin{array}{cl}
0 & \text {; if } m=0 \\
Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{(m)} x\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(7-|k|-m)}} ^{1^{(8+|k|+m)}}\right)
\end{array} \quad \text {; if } m=1,2,3,4,5 \quad ;\right. \text { where } \\
& |k|=k_{1}+k_{2} . \\
& \mathcal{S}_{3}: \sum_{k_{i}>0} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x \mathcal{D}_{8+|k|} \otimes \mathcal{D}_{7-|k|} \\
& \longrightarrow Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x \mathcal{D}_{8+|k|} \otimes \mathcal{D}_{7-|k|} \\
& \mathcal{S}_{3}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)} &
\end{array}\right)\right. \\
& =\left\{\begin{array}{cl}
0 & \text {; if } m=0 \\
Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{(m)} x\left(\left.\begin{array}{c}
w \\
w^{\prime} \mid
\end{array}\right|_{2^{(8-|k|-m)}} ^{(8+|k|+m)}\right.
\end{array}\right) \quad \text {; if } m=1,2,3,4 ; \text { where } \\
& |k|=k_{1}+k_{2}+k_{3} . \\
& \mathcal{S}_{4}: \sum_{k_{i}>0} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x \mathcal{D}_{8+|k|} \otimes \mathcal{D}_{7-|k|} \\
& \longrightarrow Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x \mathcal{D}_{8+|k|} \otimes \mathcal{D}_{7-|k|} \\
& S_{4}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array} 2^{(m)}\right)\right) \\
& =\left\{\begin{array}{cl}
0 & \text {; if } m=0 \\
Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(\kappa_{4}\right)} x Z_{21}^{(m)} x\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(7-|k|-m)}} ^{1^{(8+|k|+m)}}\right) & \text {; if } m=1,2,3
\end{array}\right. \text {; where } \\
& |k|=k_{1}+k_{2}+k_{3}+k_{4} .
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{S}_{5}: \sum_{k_{i}>0} z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x \mathcal{D}_{8+|k|} \otimes \mathcal{D}_{7-|k|} \\
& \longrightarrow Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x \mathcal{D}_{8+|k|} \otimes \mathcal{D}_{7-|k|} \\
& \mathcal{S}_{5}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x\left(\left.\begin{array}{c}
w \\
w^{\prime^{\prime}}
\end{array}\right|_{2^{(7-|k|-m)}} ^{1^{(8+|k|)}} \quad 2^{(m)}\right)\right) \\
& =\left\{\begin{array}{cl}
0 & ; \text { if } m=0 \\
Z_{21}^{\left(h_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(h_{3}\right)} x Z_{21}^{\left(h_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{(m)} x\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(7-|k|-m)}} ^{(8+|k|+m)}\right) ; \text { if } m=1,2
\end{array} ;\right. \text { where } \\
& |k|=k_{1}+k_{2}+k_{3}+k_{4}+k_{5} . \\
& \mathcal{S}_{6}: \sum_{k_{i}>0} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x \mathcal{D}_{8+|k|} \otimes \mathcal{D}_{7-|k|} \\
& \longrightarrow Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x z_{21}^{\left(k_{7}\right)} x \mathcal{D}_{8+|k|} \otimes \mathcal{D}_{7-|k|} \\
& S_{6}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(7-|k|-m)}} ^{1^{(8+|k|)}} 2^{(m)}\right)\right) \\
& =\left\{\begin{array}{c}
0 \\
; \text { if } m=0 \\
Z_{21}^{\left(h_{1}\right)} x Z_{21}^{\left(h_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(h_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(h_{6}\right)} x Z_{21}^{(m)} x\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(7-|k|-m)}} ^{1^{(8+|k|+m)}}\right) ; \text { if } m=1
\end{array} ;\right. \text { where } \\
& |k|=k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6} .
\end{aligned}
$$

So we have the following diagram:-

Now we have

$$
\left.\begin{array}{l}
\mathcal{S}_{0} \partial_{\varkappa}\left(Z_{21}^{(k)} x\left(\begin{array}{c|cc}
w & 1^{(8+k)} & 2^{(m)} \\
w^{\prime} & 2^{(7-k-m)}
\end{array}\right)\right)=\mathcal{S}_{0} \partial_{12}^{(k)}\left(\begin{array}{c|cc}
w \\
w^{\prime} & 1^{(7-k-m)} & 2^{(8+k)}
\end{array}\right) \\
=\binom{k+m}{m} Z_{21}^{(k+m)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1_{2^{(8+k-m)}}^{(8+k+m)}\right.
\end{array}\right), ~ l
$$

and

$$
\left.\begin{array}{l}
\partial_{x} \delta_{1}\left(Z_{21}^{(k)} x\left(\begin{array}{c|cc}
w & 1^{(8+k)} & 2^{(m)} \\
w^{\prime} & 2^{(7-k-m)}
\end{array}\right)=\partial_{x}\left(Z_{21}^{(k)} x Z_{21}^{(m)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} \left\lvert\, \begin{array}{c}
1^{(8+k+m)} \\
2^{(7-k-m)}
\end{array}\right.\right)\right)\right. \\
=-\binom{k+m}{m} Z_{21}^{(k+m)} x\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(8-k-m)}} ^{(8+k+m)}\right.
\end{array}\right)+Z_{21}^{(k)} x\left(\begin{array}{c|c}
w & 1^{(8+k)} \\
w^{\prime} & 2^{(m-k-m)}
\end{array}\right)
$$

It is clear that $\mathcal{S}_{0} \partial_{x}+\partial_{x} \mathcal{S}_{1}=\mathrm{id}_{\mathcal{M}_{1}}$.

$$
\begin{aligned}
& \mathcal{S}_{1} \partial_{x}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(7-|k|-m)}} ^{1^{(8+|k|)}} \quad 2^{(m)}\right)\right) \\
& =\mathcal{S}_{1}\left[-\binom{|k|}{k_{2}} Z_{21}^{(|k|)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)+\right. \\
& \left.Z_{21}^{\left(k_{1}\right)} x \partial_{21}^{\left(k_{2}\right)}\left(\begin{array}{c|c}
w \\
w^{\prime} & 1_{2^{(7-|k|-m)}}^{(8+|k|)}
\end{array} 2^{(m)}\right)\right] \\
& =-\binom{|k|}{k_{2}} Z_{21}^{(|k|)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{2}+m}{m} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}+m\right)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \partial_{x} \mathcal{S}_{2}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)=\right. \\
& \partial_{x}\left(Z _ { 2 1 } ^ { (k _ { 1 }) } x Z _ { 2 1 } ^ { (k _ { 2 }) } x Z _ { 2 1 } ^ { (m) } x \left(\begin{array}{c}
w \\
\left.\left.\left.w^{\prime} \left\lvert\, \begin{array}{l}
1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right.\right)\right), ~\right) ~
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \binom{k_{2}+m}{m} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}+m\right)} x\left(\begin{array}{c}
w \\
w^{\prime} \mid
\end{array} 1_{2^{(7-|k|-m)}}^{(8+|k|+m)}\right)+ \\
& z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 2^{1^{(7-|k|-m)}}{ }^{(8+|k|)} \quad 2^{(m)}\right) ; \text { where }|k|=k_{1}+k_{2} .
\end{aligned}
$$

It is clear that $\delta_{1} \partial_{x}+\partial_{x} \mathcal{S}_{2}=\operatorname{id}_{\mathcal{M}_{2}}$.

$$
\begin{aligned}
& \mathcal{S}_{2} \partial_{x}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)\right) \\
& =\mathcal{S}_{2}\left[\binom{k_{1}+k_{2}}{k_{2}} Z_{21}^{\left(k_{1}+k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)-\right. \\
& \binom{k_{2}+k_{3}}{k_{3}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}+k_{3}\right)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array} 2^{(m)}\right)+ \\
& \left.Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x \partial_{21}^{\left(k_{3}\right)}\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)\right] \\
& =\binom{k_{1}+k_{2}}{k_{2}} Z_{21}^{\left(k_{1}+k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1_{2^{(8+|k|+m)}}^{(8-|k|-m)}\right)- \\
& \binom{k_{2}+k_{3}}{k_{3}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}+k_{3}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{3}+m}{m} z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}+m\right)} x\left(\begin{array}{c|c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \partial_{x} \mathcal{S}_{3}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x\left(\begin{array}{c|c}
w \\
w^{\prime} & 2^{(7-|k|-m)} \\
1^{(8+|k|)} & 2^{(m)}
\end{array}\right)\right)= \\
& \partial_{x}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1_{2^{(8+|k|+m)}}^{(8+|k|+m)}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \binom{k_{3}+m}{m} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}+m\right)} x\left(\left.\begin{array}{c}
w \\
w^{\prime} \mid
\end{array}\right|_{2^{(8+|k|-m)}} ^{(8-|k|+m)}\right)+ \\
& Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x \partial_{21}^{(m)}\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right) \\
& =-\binom{k_{1}+k_{2}}{k_{2}} Z_{21}^{\left(k_{1}+k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \binom{k_{3}+m}{m} z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}+m\right)} x\left(\begin{array}{c|c}
w & \left.\right|^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)+
\end{aligned}
$$

$$
Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right) ; \text { where }|k|=k_{1}+k_{2}+k_{3}
$$

It is clear that $\mathcal{S}_{2} \partial_{x}+\partial_{x} \mathcal{S}_{3}=\mathrm{id}_{\mathcal{M}_{3}}$.

$$
\begin{aligned}
& S_{3} \partial_{x}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)\right) \\
& =\delta_{3}\left[-\binom{k_{1}+k_{2}}{k_{2}} Z_{21}^{\left(k_{1}+k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 2^{1^{(7-|k|-m)}} 2^{(8+|k|)} \quad 2^{(m)}\right)+\right. \\
& \binom{k_{2}+k_{3}}{k_{3}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}+k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)- \\
& \binom{k_{3}+k_{4}}{k_{4}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}+k_{4}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)+ \\
& \left.Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x \partial_{21}^{\left(k_{4}\right)}\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)\right] \\
& =-\binom{k_{1}+k_{2}}{k_{2}} Z_{21}^{\left(k_{1}+k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{2}+k_{3}}{k_{3}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}+k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1^{(8+|k|+m)} 2^{(7-|k|-m)}\right)- \\
& \binom{k_{3}+k_{4}}{k_{4}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}+k_{4}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c}
w \\
w^{\prime} \\
2^{(8+|k|+m)}
\end{array}\right)+ \\
& \binom{k_{4}+m}{m} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}+m\right)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \partial_{x} \mathcal{S}_{4}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)\right)= \\
& \partial_{x}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)\right) \\
& =\binom{k_{1}+k_{2}}{k_{2}} Z_{21}^{\left(k_{1}+k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{(m)} x\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|^{(8+|k|+m)}\left(\begin{array}{c}
(7-|k|-m)
\end{array}\right)-\right. \\
& \binom{k_{2}+k_{3}}{k_{3}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}+k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{(m)} x\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(8-|k|-m)}} ^{(8+|k|+m)}\right)+ \\
& \binom{k_{3}+k_{4}}{k_{4}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}+k_{4}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c}
w \\
w^{\prime} \mid \\
1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right)-
\end{aligned}
$$

$$
\begin{aligned}
& \binom{k_{4}+m}{m} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}+m\right)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1_{2^{(7-|k|-m)}}^{(8+|k|+m)}\right)+ \\
& Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x \partial_{21}^{(m)}\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right) \\
& =\binom{k_{1}+k_{2}}{k_{2}} Z_{21}^{\left(k_{1}+k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{(m)} x\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(7-|k|-m)}} ^{1(8+|k|+m)}\right)- \\
& \binom{k_{2}+k_{3}}{k_{3}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}+k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c}
w \\
w^{\prime} \mid \\
1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{3}+k_{4}}{k_{4}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}+k_{4}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c}
w \\
w^{\prime} \mid
\end{array} 1^{1(8+|k|+m)} 2^{(7-|k|-m)}\right)- \\
& \binom{k_{4}+m}{m} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}+m\right)} x\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(8-|k|-m)}} ^{1^{(8+|k|+m)}}\right)+ \\
& Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right) ;
\end{aligned}
$$

Where $|k|=k_{1}+k_{2}+k_{3}+k_{4}$.
It is clear that $\mathcal{S}_{3} \partial_{x}+\partial_{x} \mathcal{S}_{4}=\operatorname{id}_{\mathcal{M}_{4}}$.

$$
\begin{aligned}
& \mathcal{S}_{4} \partial_{x}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & \left.\left.2^{(m)}\right)\right)= \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)=\right. \\
& \mathcal{S}_{4}\left[\binom{k_{1}+k_{2}}{k_{2}} Z_{21}^{\left(k_{1}+k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array} 2^{(m)}\right)-\right. \\
& \binom{k_{2}+k_{3}}{k_{3}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}+k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{3}+k_{4}}{k_{4}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}+k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)- \\
& \binom{k_{4}+k_{5}}{k_{5}} Z_{21}^{\left(k_{1}\right)} x z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}+k_{5}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)+ \\
& \left.Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x \partial_{21}^{\left(k_{5}\right)}\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)\right] \\
& =\binom{k_{1}+k_{2}}{k_{2}} Z_{21}^{\left(k_{1}+k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)- \\
& \binom{k_{2}+k_{3}}{k_{3}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}+k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w \\
w^{\prime} \mid & 1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right)+
\end{aligned}
$$

$$
\left.\begin{array}{l}
\binom{k_{3}+k_{4}}{k_{4}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}+k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right)- \\
\binom{k_{4}+k_{5}}{k_{5}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}+k_{5}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1^{(8+|k|+m)}\right. \\
\left(\begin{array}{c}
(7-|k|-m)
\end{array}\right)+ \\
m
\end{array}\right) Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}+m\right)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1_{2^{(7-|k|-m)}}^{(8+|k|+m)}\right), ~ l
$$

and

$$
\begin{aligned}
& \partial_{x} \mathcal{S}_{5}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & \left.\left.2^{(m)}\right)\right)= \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)=\right. \\
& \partial_{x}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right)\right) \\
& =-\binom{k_{1}+k_{2}}{k_{2}} Z_{21}^{\left(k_{1}+k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{2}+k_{3}}{k_{3}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}+k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)- \\
& \binom{k_{3}+k_{4}}{k_{4}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}+k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{4}+k_{5}}{k_{5}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}+k_{5}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1^{1(8+|k|+m)} 2^{(7-|k|-m)}\right)- \\
& \binom{k_{5}+m}{m} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}+m\right)} x\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(7-|k|-m)}} ^{(8+|k|+m)}\right)+ \\
& Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x \partial_{21}^{(m)}\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right) \\
& =-\binom{k_{1}+k_{2}}{k_{2}} Z_{21}^{\left(k_{1}+k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{2}+k_{3}}{k_{3}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}+k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c}
w \\
w^{\prime} \\
2^{(8-|k|-m)}
\end{array}\right)- \\
& \binom{k_{3}+k_{4}}{k_{4}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}+k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1^{(8+|k|+m)} 2^{(7-|k|-m)} .\right)+ \\
& \binom{k_{4}+k_{5}}{k_{5}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}+k_{5}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right)- \\
& \binom{k_{5}+m}{m} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}+m\right)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1^{(8+|k|+m)} 2^{(7-|k|-m)}\right)+
\end{aligned}
$$

$$
Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)
$$

where $|k|=k_{1}+k_{2}+k_{3}+k_{4}+k_{5}$.
It is clear that $\mathcal{S}_{4} \partial_{x}+\partial_{x} \mathcal{S}_{5}=\mathrm{id}_{\mathcal{M}_{5}}$.

$$
\begin{aligned}
& \mathcal{S}_{5} \partial_{x}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)\right)= \\
& \mathcal{S}_{5}\left[-\binom{k_{1}+k_{2}}{k_{2}} Z_{21}^{\left(k_{1}+k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array} 2^{(m)}\right)\right. \\
& +\binom{k_{2}+k_{3}}{k_{3}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}+k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)- \\
& \binom{k_{3}+k_{4}}{k_{4}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}+k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{4}+k_{5}}{k_{5}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}+k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)-
\end{aligned}
$$

$$
\binom{k_{5}+k_{6}}{k_{6}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}+k_{6}\right)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|)} \\
w^{\prime} & 2^{(m-|k|-m)}
\end{array}\right)+
$$

$$
\left.Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x \partial_{21}^{\left(k_{6}\right)}\left(\begin{array}{c|cc}
w & 1^{(8+|k|)} & 2^{(m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)\right]
$$

$$
=-\binom{k_{1}+k_{2}}{k_{2}} Z_{21}^{\left(k_{1}+k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1^{(8+|k|+m)} 2^{(7-|k|-m)}\right)
$$

$$
+\binom{k_{2}+k_{3}}{k_{3}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}+k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right)
$$

$$
-\binom{k_{3}+k_{4}}{k_{4}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}+k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)
$$

$$
+\binom{k_{4}+k_{5}}{k_{5}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}+k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right)
$$

$$
-\binom{k_{5}+k_{6}}{k_{6}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}+k_{6}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right)
$$

$$
\left.+\binom{k_{6}+m}{m} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}+m\right)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)\right]
$$

and

$$
\begin{aligned}
& \partial_{x} \mathcal{S}_{6}\left(Z _ { 2 1 } ^ { (k _ { 1 }) } x Z _ { 2 1 } ^ { (k _ { 2 }) } x Z _ { 2 1 } ^ { (k _ { 3 }) } x Z _ { 2 1 } ^ { (k _ { 4 }) } x Z _ { 2 1 } ^ { (k _ { 5 }) } x Z _ { 2 1 } ^ { (k _ { 6 }) } x \left(\begin{array}{c}
w \\
\left.\left.\left.w^{\prime}\right|_{2^{(7-|k|-m)}} ^{1^{(8+|k|)}} 2^{(m)}\right)\right)= \\
\end{array}\right.\right. \\
& \partial_{x}\left(Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \binom{k_{2}+k_{3}}{k_{3}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}+k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{3}+k_{4}}{k_{4}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}+k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)- \\
& \binom{k_{4}+k_{5}}{k_{5}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}+k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1^{(8+|k|+m)} 2^{(7-|k|-m)}\right)+ \\
& \binom{k_{5}+k_{6}}{k_{6}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}+k_{6}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)- \\
& \binom{k_{6}+m}{m} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}+m\right)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)+ \\
& Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x \partial_{21}^{(m)}\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right) \\
& =\binom{k_{1}+k_{2}}{k_{2}} Z_{21}^{\left(k_{1}+k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c}
w \\
w^{\prime} \mid
\end{array} 1^{(8+|k|+m)} 2^{(7-|k|-m)}\right)- \\
& \binom{k_{2}+k_{3}}{k_{3}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}+k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{3}+k_{4}}{k_{4}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}+k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x Z_{21}^{(m)} x\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(8-|k|-m)}} ^{(8+|k|+m)}\right)- \\
& \binom{k_{4}+k_{5}}{k_{5}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}+k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{5}+k_{6}}{k_{6}} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}+k_{6}\right)} x Z_{21}^{(m)} x\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(8+|k|+m)} \\
2^{(7-|k|-m)}
\end{array}\right)- \\
& \binom{k_{6}+m}{m} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}+m\right)} x\left(\begin{array}{c|c}
w & 1^{(8+|k|+m)} \\
w^{\prime} & 2^{(7-|k|-m)}
\end{array}\right)+ \\
& Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x Z_{21}^{\left(k_{3}\right)} x Z_{21}^{\left(k_{4}\right)} x Z_{21}^{\left(k_{5}\right)} x Z_{21}^{\left(k_{6}\right)} x\left(\begin{array}{c}
w \\
w^{\prime} \\
2^{(7-|k|-m)}
\end{array} 2^{(8+|k|)} \quad 2^{(m)}\right) ;
\end{aligned}
$$

where $|k|=k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6}$.
It is clear that $\mathcal{S}_{5} \partial_{x}+\partial_{x} \mathcal{S}_{6}=\mathrm{id}_{\mathcal{M}_{6}}$.

From above we obtain that $\left\{\mathcal{S}_{0}, \mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}, \mathcal{S}_{4}, \mathcal{S}_{5}, \mathcal{S}_{6}\right\}$ is a contracting homotopy [31] and [32] which implies the complex

$$
0 \longrightarrow \mathcal{M}_{7} \longrightarrow \mathcal{M}_{6} \longrightarrow \mathcal{M}_{5} \longrightarrow \mathcal{M}_{4} \longrightarrow \mathcal{M}_{3} \longrightarrow \mathcal{M}_{2} \longrightarrow \mathcal{M}_{1} \longrightarrow \mathcal{M}_{0}
$$

is exact.

2.2 Resolution for the three-rowed Weyl module

We exhibit the theory of the resolution $\operatorname{Res}\left[p, q, r ; t_{1}, t_{2}\right]$ of the Weyl module $\left[p, q, r ; t_{1}, t_{2}\right]$ associated with the three-rowed skew-shape, [15]

The Weyl module $\mathcal{K}_{\lambda / \mu}$ is exhibited by the box map
$\sum_{k>0} \mathcal{D}_{p+t_{1}+k} \otimes \mathcal{D}_{\mathcal{q}-t_{1}-k} \otimes \mathcal{D}_{r}$
\oplus

$$
\begin{equation*}
\xrightarrow{\square} \mathcal{D}_{\mathcal{p}} \otimes \mathcal{D}_{q} \otimes \mathcal{D}_{r} \xrightarrow{d^{\prime} \lambda / \mu} \mathcal{K}_{\lambda / \mu} \tag{2.2.1}
\end{equation*}
$$

$\sum_{e>0} \mathcal{D}_{p} \otimes \mathcal{D}_{q+t_{2}+e} \otimes \mathcal{D}_{r-t_{2}-e}$

As in (2.1.1), the maps

$$
\sum_{k>0} \mathcal{D}_{p+t_{1}+k} \otimes \mathcal{D}_{q-t_{1}-k} \otimes \mathcal{D}_{r} \longrightarrow \mathcal{D}_{p} \otimes \mathcal{D}_{q} \otimes \mathcal{D}_{r}
$$

may be explicated as $k^{t h}$ divided power of the place polarization from place 1 to place 2 (i.e. $\partial_{21}^{(k)}$), the maps

$$
\sum_{e>0} \mathcal{D}_{\mathcal{p}} \otimes \mathcal{D}_{q+t_{2}+e} \otimes \mathcal{D}_{r-t_{2}-e} \longrightarrow \mathcal{D}_{p} \otimes \mathcal{D}_{q} \otimes \mathcal{D}_{r},
$$

may be explicated as $e^{t h}$ divided power of the place polarization from place 2 to place 3 (i.e. $\partial_{32}^{(e)}$), and as in two-rowed case.

The authors in [15] introduce two generators Z_{21} and Z_{32} with their divided powers writing in place of (2.2.1)
$\sum_{k>0} z_{21}^{\left(t_{1}+k\right)} x \mathcal{D}_{\mathfrak{p}+t_{1}+k} \otimes \mathcal{D}_{\mathcal{q}-t_{1}-k} \otimes \mathcal{D}_{r}$

$$
\begin{equation*}
\oplus \quad \xrightarrow{\square} \mathcal{D}_{\mathcal{p}} \otimes \mathcal{D}_{q} \otimes \mathcal{D}_{r} \tag{2.2.2}
\end{equation*}
$$

$\sum_{e>0} z_{32}^{\left(t_{2}+e\right)} y \mathcal{D}_{\mathfrak{p}} \otimes \mathcal{D}_{q+t_{2}+e} \otimes \mathcal{D}_{r-t_{2}-e} ;$
where x and y stand for separator variables, and the boundary map is $\partial_{x}+\partial_{y}$.

For the case of one-triple overlap the authors in [15] exhibit all specifics of this case which has one triple overlap i.e. $r \leq t_{1}+t_{2}+1$.

Theorem (2.2.1): [15]

Let $\left[p, q, r ; t_{1}, t_{2}\right]$ be a Weyl module with $r \leq t_{1}+t_{2}+1$ Then the complex \mathcal{M}_{0} is a projective resolution of $\mathcal{K}_{\lambda / \mu}$ when the maps are mentioned by $\partial_{\delta}=\partial_{x}+\partial_{y}$.

From [15] we recall the following proposition to give the compact form of the terms of \mathcal{M}.

Proposition (2.2.2): [15]

Let $\operatorname{Bar}(\mathcal{A} ; \mathcal{S})$ be the Bar complex defined in Definition (1.4.3); where \mathcal{A} is the free associative non-commutative algebra generated by the variable $Z_{m n}$ with $m, n \in\{1,2,3\}$, and $\mathcal{S}=\{x, y, z\}$. For a fixed m, n, σ, and e, the symbol

$$
z_{m n}^{(\sigma)} \odot \underline{z}_{m n}^{(e)}
$$

is denoted the homogenous strand of the Bar complex of total degree $\sigma+e$ with an initial term of degree $\geq \boldsymbol{\sigma}$.
For example

$$
z_{32}^{(\sigma+1)} y z_{32}
$$

$Z_{32}^{(\sigma)} \bigcirc \underline{Z}_{32}^{(2)}: 0 \longrightarrow Z_{32}^{(\sigma)} y Z_{32} y Z_{32} \longrightarrow \oplus Z_{32}^{(\sigma+2)} \longrightarrow 0$

$$
z_{32}^{(\sigma)} y z_{32}^{(2)}
$$

$\underline{Z}_{m n}^{(e)}, e>0$

Equals the homogeneous strand of the normalized Bar complex of degree 1 .

As in [15] the terms of complex \mathcal{M}. are described as:
$\operatorname{Res}\left(\left[p_{1}, p_{2} ; t_{1}\right]\right) \otimes \mathcal{D}_{p_{3}} \oplus \sum_{e \geq 0} Z_{32}^{\left(t_{2}+1\right)} \odot \underline{Z}_{32}^{(e)} \operatorname{Res}\left(\left[p_{1}, p_{2}+t_{2}+1+e ; t_{1}+\right.\right.$ $\left.\left.t_{2}+1+e\right]\right) \otimes \mathcal{D}_{p_{3-\left(t_{2}+1+e\right)}}$

The following example illustrates the above formulation.

Example (2.2.3): [23]

For the three-rowed partition $(p, q, 1)$, the terms of the resolution are:
$\operatorname{Res}([p, q ; 0]) \otimes \mathcal{D}_{1} \oplus \underline{Z}_{32} y \operatorname{Res}([p, q+1 ; 1]) \otimes \mathcal{D}_{0} ;$
where $\underline{Z}_{32} y$ is the complex

$$
0 \longrightarrow Z_{32} y \longrightarrow Z_{32} \longrightarrow 0
$$

From the terms of \mathcal{M}. the only basically new terms are the terms which have the following formulation:

$$
Z_{32} y Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x \ldots Z_{21}^{\left(k_{n-1}\right)} x \mathcal{D}_{p+|k|} \otimes D_{q+1-|k|} \otimes D_{0}
$$

By employing the boundary map $\partial_{x}+\partial_{y}$ on these terms we get some terms of the formulation:

$$
Z_{32} Z_{21}^{\left(k_{1}\right)} x Z_{21}^{\left(k_{2}\right)} x \ldots Z_{21}^{\left(k_{n-1}\right)} x \mathcal{D}_{\mathcal{p}-|k|} \otimes D_{q+1-|k|} \otimes D_{0}
$$

Then to obtain the resolution

$$
\mathcal{M}_{0}: \ldots \mathcal{M}_{i} \longrightarrow \mathcal{M}_{i-1} \longrightarrow \ldots \longrightarrow \mathcal{M}_{1} \longrightarrow \mathcal{M}_{0}
$$

of $\mathcal{K}_{\lambda / \mu}$ recall that the quotient of $\operatorname{Bar}(\mathcal{M}, \mathcal{A} ; \mathcal{S})=\overline{\mathcal{M}}$. module is the following (Capelli identities) relations:

$$
Z_{32}^{(a)} Z_{21}^{(b)} x=\sum_{k<b} Z_{21}^{(b-k)} x z_{32}^{(a-k)} \partial_{31}^{(k)}
$$

where the symbol $\partial_{31}^{(k)}$ means the divided power of the usual place polarization.

Resemble in the two-rowed case we write the module of the resolution as $\mathcal{M}_{0}=\mathcal{D}_{p} \otimes D_{q} \otimes D_{r}$ and \mathcal{M}_{i} with $i=1,2, \ldots$ for the terms which have dimension i (i.e. the number of the separators).

For the case of two-triple overlap, we survey it in the next chapter for the case of the partition $(8,7,3)$ which is one of its applications.

Introduction

In this chapter we survey in specify an application of the resolution of three-rowed Weyl module for the case of the partition $(8,7,3)$; where we find the terms of characteristic-free resolution in the first section, the terms and diagrams of Lascoux complex in the second section, while reduction from the characteristic-free resolution of Weyl module to characteristic-zero resolution (Lascoux resolution) find it in the third section. Eventually, in the last section we employing the mapping Cone and its diagrams to gain the characteristic-zero resolution (Lascoux resolution) and prove it to be exact without depending on the boundary maps.

3.1 The characteristic-free resolution in the case of partition

$(8,7,3)$

We stratify the following formula for the case of partition (p, q, r) to obtain the terms of the resolution for the partition $(8,7,3)$, [15]
$\operatorname{Res}([p p, q ; 0]) \otimes \mathcal{D}_{r} \oplus \sum_{e \geq 0} \underline{Z}_{32}^{(e+1)} y \operatorname{Res}([p, q+e+1 ; e+1]) \otimes \mathcal{D}_{r-e-1} \oplus$
$\sum_{e_{1} \geq 0, e_{2} \geq e_{1}} \underline{Z}_{32}^{\left(e_{2}+1\right)} y \underline{Z}_{31}^{\left(e_{1}+1\right)} z \operatorname{Res}\left(\left[p+e_{1}+1, q+e_{2}+1 ; e_{2}-e_{1}\right]\right) \otimes$
$\mathcal{D}_{r-\left(e_{1}+e_{2}+2\right)} ;$
where $\underline{Z}_{a b}^{(m)}$ is the pursue Bar complex
$0 \rightarrow \underbrace{Z_{a b} w Z_{a b} w \ldots Z_{a b}}_{m \text {-times }} \rightarrow \sum_{k_{i} \geq 1, \sum k_{i}=m} Z_{a b}^{\left(k_{1}\right)} w Z_{a b}^{\left(k_{2}\right)} w \ldots Z_{a b}^{\left(k_{m-1}\right)} \rightarrow \cdots \rightarrow Z_{a b}^{(m)} \rightarrow 0$

Hence the terms of the resolution for the case for the partition $(8,7,3)$ is
$\operatorname{Res}([8,7 ; 0]) \otimes \mathcal{D}_{3} \oplus \sum_{e \geq 0} \underline{Z}_{32}^{(e+1)} y \operatorname{Res}([8,7+e+1 ; e+1]) \otimes \mathcal{D}_{3-e-1} \oplus$
$\sum_{e_{1} \geq 0, e_{2} \geq e_{1}} \underline{Z}_{32}^{\left(e_{2}+1\right)} y \underline{Z}_{31}^{\left(e_{1}+1\right)} z \operatorname{Res}\left(\left[8+e_{1}+1,7+e_{2}+1 ; e_{2}-e_{1}\right]\right) \otimes$ $\mathcal{D}_{3-\left(e_{1}+e_{2}+2\right)}$

So
$\sum_{e \geq 0} \underline{Z}_{32}^{(e+1)} y \operatorname{Res}([8,7+e+1 ; e+1]) \otimes \mathcal{D}_{3-e-1}=$
$\underline{Z}_{32} y \operatorname{Res}([8,8 ; 1]) \otimes \mathcal{D}_{2} \oplus \underline{Z}_{32}^{(2)} y \operatorname{Res}([8,9 ; 2]) \otimes \mathcal{D}_{1} \oplus \underline{Z}_{32}^{(3)} y \operatorname{Res}([8,10 ; 3]) \otimes \mathcal{D}_{0}$, and
$\sum_{e_{1} \geq 0, e_{2} \geq e_{1}} \underline{z}_{32}^{\left(e_{2}+1\right)} y \underline{z}_{31}^{\left(e_{1}+1\right)} z \operatorname{Res}\left(\left[8+e_{1}+1,7+e_{2}+1 ; e_{2}-e_{1}\right]\right) \otimes$
$\mathcal{D}_{3-\left(e_{1}+e_{2}+2\right)}=\underline{Z}_{32} y \underline{\mathcal{Z}}_{31} z \operatorname{Res}([9,8 ; 0]) \otimes \mathcal{D}_{1} \oplus \underline{Z}_{32}^{(2)} y \underline{\mathcal{Z}}_{31} z \operatorname{Res}([9,9 ; 1]) \otimes \mathcal{D}_{0} ;$ where $\underline{Z}_{32} y$ is the Bar complex

$$
0 \rightarrow Z_{32} y \xrightarrow{\partial_{y}} Z_{32} \rightarrow 0
$$

$\underline{z}_{32}^{(2)} y$ is the Bar complex

$$
0 \rightarrow Z_{32} y Z_{32} y \xrightarrow{\partial_{y}} Z_{32}^{(2)} y \xrightarrow{\partial_{y}} Z_{32}^{(2)} \rightarrow 0
$$

$\underline{Z}_{32}^{(3)} y$ is the Bar complex

$$
0 \rightarrow z_{32} y z_{32} y z_{32} y \xrightarrow{\partial_{y}} \underset{\substack{z_{32} \\ z_{32} y z_{32}^{(2)} y}}{\oplus} \xrightarrow{z_{32} y} Z_{32}^{(3)} y \xrightarrow{\partial_{y}} Z_{32}^{(3)} \rightarrow 0
$$

and $\underline{Z}_{31} z$ is the Bar complex

$$
0 \rightarrow Z_{31} z \xrightarrow{\partial_{z}} Z_{31} \rightarrow 0
$$

where x, y and z stand for the separator variables, and the boundary map is $\partial_{x}+\partial_{y}+\partial_{z}$.

Let $\operatorname{Bar}(\mathcal{M}, \mathcal{A} ; \mathcal{S})$ be the free Bar module on the set $\mathcal{S}=\{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}\}$; where \mathcal{A} is the free associative algebra generated by Z_{21}, Z_{32}, and Z_{31} and their divided powers with the following relations:

$$
z_{32}^{(a)} z_{31}^{(b)}=z_{31}^{(b)} z_{32}^{(a)} \quad \text { and } \quad z_{21}^{(a)} z_{31}^{(b)}=z_{31}^{(b)} z_{21}^{(a)}
$$

And the module \mathcal{M} is the direct sum of $\mathcal{D}_{\mathfrak{p}} \otimes \mathcal{D}_{q} \otimes \mathcal{D}_{r}$ for suitable p, q, and r with the action of Z_{21}, Z_{32}, and Z_{31} and their divided powers.

The terms of the characteristic-free resolution (3.1.1); where $b, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, c_{1}, c_{2} \in \mathbb{Z}^{+}$are:

- In dimension zero (X_{0}) we have $\mathcal{D}_{8} \otimes \mathcal{D}_{7} \otimes \mathcal{D}_{3}$.
- In dimension one (X_{1}) we have
- $z_{21}^{(b)} x \mathcal{D}_{8+b} \otimes \mathcal{D}_{7-b} \otimes \mathcal{D}_{3}$; where $1 \leq b \leq 7$.
- $z_{32}^{(b)} y \mathcal{D}_{8} \otimes \mathcal{D}_{7+b} \otimes \mathcal{D}_{3-b}$; where $1 \leq b \leq 3$.
- In dimension two (X_{2}) we have the sum of the following terms:
- $z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{7-|b|} \otimes \mathcal{D}_{3}$; where $2 \leq|b|=b_{1}+b_{2} \leq 7$.
- $Z_{32} y Z_{21}^{(b)} x \mathcal{D}_{8+b} \otimes \mathcal{D}_{8-b} \otimes \mathcal{D}_{2}$; where $2 \leq b \leq 8$.
- $z_{32}^{(2)} y z_{21}^{(b)} x \mathcal{D}_{8+b} \otimes \mathcal{D}_{9-b} \otimes \mathcal{D}_{1}$; where $3 \leq b \leq 9$.
- $Z_{32}^{(3)} y Z_{21}^{(b)} x \mathcal{D}_{8+b} \otimes \mathcal{D}_{10-b} \otimes \mathcal{D}_{0}$; where $4 \leq b \leq 10$.
- $Z_{32}^{\left(b_{1}\right)} y z_{32}^{\left(b_{2}\right)} y \mathcal{D}_{8} \otimes \mathcal{D}_{7+|b|} \otimes \mathcal{D}_{3-|b|} ;$ where $2 \leq|b|=b_{1}+b_{2} \leq 3$.
- $Z_{32}^{(b)} y \mathcal{Z}_{31} z \mathcal{D}_{9} \otimes \mathcal{D}_{7+b} \otimes \mathcal{D}_{2-b}$; where $1 \leq b \leq 2$.
- In dimension three $\left(X_{3}\right)$ we have the sum of the following terms:
- $Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{7-|b|} \otimes \mathcal{D}_{3}$; where $3 \leq|b|=\sum_{i=1}^{3} b_{i} \leq 7$ and $b_{1} \geq 1$.
- $Z_{32} y \mathcal{Z}_{21}^{\left(b_{1}\right)} x \mathcal{Z}_{21}^{\left(b_{2}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{8-|b|} \otimes \mathcal{D}_{2}$; where $3 \leq|b|=b_{1}+b_{2} \leq 8$ and $b_{1} \geq 2$.
- $Z_{32}^{(2)} y z_{21}^{\left(b_{1}\right)} x z_{21}^{\left(b_{2}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{1}$; where $4 \leq|b|=b_{1}+b_{2} \leq 9$ and $b_{1} \geq 3$.
- $Z_{32} y \mathcal{Z}_{32} y z_{21}^{(b)} x \mathcal{D}_{8+b} \otimes \mathcal{D}_{9-b} \otimes \mathcal{D}_{1}$; where $3 \leq b \leq 9$.
- $Z_{32}^{(3)} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{10-|b|} \otimes \mathcal{D}_{0}$; where $5 \leq|b|=b_{1}+b_{2} \leq 10$ and $b_{1} \geq 4$.
- $z_{32}^{\left(c_{1}\right)} y z_{32}^{\left(c_{2}\right)} y z_{21}^{(b)} x \mathcal{D}_{8+b} \otimes \mathcal{D}_{10-b} \otimes \mathcal{D}_{0}$; where $c_{1}+c_{2}=3$ and $4 \leq b \leq 10$.
- $Z_{32} y Z_{32} y Z_{32} y \mathcal{D}_{8} \otimes \mathcal{D}_{10} \otimes \mathcal{D}_{0}$.
- $Z_{32} y \mathcal{Z}_{31} z Z_{21}^{(b)} x \mathcal{D}_{9+b} \otimes \mathcal{D}_{8-b} \otimes \mathcal{D}_{1}$; where $1 \leq b \leq 8$.
- $z_{32}^{(2)} y z_{31} z z_{21}^{(b)} x \mathcal{D}_{9+b} \otimes \mathcal{D}_{9-b} \otimes \mathcal{D}_{0}$; where $2 \leq b \leq 9$.
- $Z_{32} y \mathcal{Z}_{32} y Z_{31} z \mathcal{D}_{9} \otimes \mathcal{D}_{9} \otimes \mathcal{D}_{0}$.
- In dimension four $\left(X_{4}\right)$ we have the sum of the following terms:
- $Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{7-|b|} \otimes \mathcal{D}_{3}$;where $4 \leq|b|=\sum_{i=1}^{4} b_{i} \leq 7$ and $b_{1} \geq 1$.
- $Z_{32} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{8-|b|} \otimes \mathcal{D}_{2}$; where $4 \leq|b|=\sum_{i=1}^{3} b_{i} \leq 8$ and $b_{1} \geq 2$.
- $Z_{32}^{(2)} y \mathcal{Z}_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x \mathcal{Z}_{21}^{\left(b_{3}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{1}$; where $5 \leq|b|=\sum_{i=1}^{3} b_{i} \leq 9$ and $b_{1} \geq 3$.
- $Z_{32} y Z_{32} y \mathcal{Z}_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{1}$; where $4 \leq|b|=b_{1}+b_{2} \leq 9$; and $b_{1} \geq 3$.
- $Z_{32}^{(3)} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{10-|b|} \otimes \mathcal{D}_{0}$; where $6 \leq|b|=\sum_{i=1}^{3} b_{i} \leq 10$ and $b_{1} \geq 4$.
- $z_{32}^{\left(c_{1}\right)} y z_{32}^{\left(c_{2}\right)} y z_{21}^{\left(b_{1}\right)} x z_{21}^{\left(b_{2}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{10-|b|} \otimes \mathcal{D}_{0}$; where $c_{1}+c_{2}=3$, $5 \leq|b|=b_{1}+b_{2} \leq 10$ and $b_{1} \geq 4$.
- $Z_{32} y Z_{32} y Z_{32} y Z_{21}^{(b)} x \mathcal{D}_{8+b} \otimes \mathcal{D}_{10-b} \otimes \mathcal{D}_{0}$; where $4 \leq b \leq 10$.
- $Z_{32} y Z_{31} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{8-|b|} \otimes \mathcal{D}_{1}$; where $2 \leq|b|=b_{1}+b_{2} \leq 8$ and $b_{1} \geq 1$.
- $Z_{32}^{(2)} y \mathcal{Z}_{31} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{0} ;$ where $3 \leq|b|=b_{1}+b_{2} \leq 9$ and $b_{1} \geq 2$.
- $Z_{32} y \mathcal{Z}_{32} y \mathcal{Z}_{31} z \mathcal{Z}_{21}^{(b)} x \mathcal{D}_{9+b} \otimes \mathcal{D}_{9-b} \otimes \mathcal{D}_{0}$; where $2 \leq b \leq 9$.
- In dimension five $\left(X_{5}\right)$ we have the sum of the following terms:
- $z_{21}^{\left(b_{1}\right)} x z_{21}^{\left(b_{2}\right)} x z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x z_{21}^{\left(b_{5}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{7-|b|} \otimes \mathcal{D}_{3}$; where $5 \leq|b|=\sum_{i=1}^{5} b_{i} \leq 7$ and $b_{1} \geq 1$.
- $Z_{32} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x \mathcal{Z}_{21}^{\left(b_{3}\right)} x z_{21}^{\left(b_{4}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{8-|b|} \otimes \mathcal{D}_{2}$; where $5 \leq|b|=\sum_{i=1}^{4} b_{i} \leq 8$ and $b_{1} \geq 2$.
- $Z_{32}^{(2)} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{1}$; where $6 \leq|b|=\sum_{i=1}^{4} b_{i} \leq 9$ and $b_{1} \geq 3$.
- $Z_{32} y \mathcal{Z}_{32} y Z_{21}^{\left(b_{1}\right)} x z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{1}$; where $5 \leq|b|=\sum_{i=1}^{3} b_{i} \leq 9$ and $b_{1} \geq 3$.
- $Z_{32}^{(3)} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{10-|b|} \otimes \mathcal{D}_{0}$; where $7 \leq|b|=\sum_{i=1}^{4} b_{i} \leq 10$ and $b_{1} \geq 4$.
- $Z_{32}^{\left(c_{1}\right)} y Z_{32}^{\left(c_{2}\right)} y z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{10-|b|} \otimes \mathcal{D}_{0}$; where $c_{1}+c_{2}=3$, $6 \leq|b|=\sum_{i=1}^{3} b_{i} \leq 10$ and $b_{1} \geq 4$.
- $Z_{32} y \mathcal{Z}_{32} y \mathcal{Z}_{32} y \mathcal{Z}_{21}^{\left(b_{1}\right)} x \mathcal{Z}_{21}^{\left(b_{2}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{10-|b|} \otimes \mathcal{D}_{0}$; where $5 \leq|b|=b_{1}+b_{2} \leq 10$ and $b_{1} \geq 4$.
- $Z_{32} y \mathcal{Z}_{31} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{8-|b|} \otimes \mathcal{D}_{1}$; where $3 \leq|b|=\sum_{i=1}^{3} b_{i} \leq 8$ and $b_{1} \geq 1$.
- $z_{32}^{(2)} y \mathcal{Z}_{31} z \mathcal{Z}_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x z_{21}^{\left(b_{3}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{0}$; where $4 \leq|b|=\sum_{i=1}^{3} b_{i} \leq 9$ and $b_{1} \geq 2$.
- $Z_{32} y Z_{32} y \mathcal{Z}_{31} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{0}$; where $3 \leq|b|=b_{1}+b_{2} \leq 9$ and $b_{1} \geq 2$.
- In dimension six $\left(X_{6}\right)$ we have the sum of the following terms:
- $Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x z_{21}^{\left(b_{3}\right)} x \mathcal{Z}_{21}^{\left(b_{4}\right)} x \mathcal{Z}_{21}^{\left(b_{5}\right)} x Z_{21}^{\left(b_{6}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{7-|b|} \otimes \mathcal{D}_{3}$; where $6 \leq|b|=\sum_{i=1}^{6} b_{i} \leq 7$ and $b_{1} \geq 1$.
- $Z_{32} y Z_{21}^{\left(b_{1}\right)} x z_{21}^{\left(b_{2}\right)} x z_{21}^{\left(b_{3}\right)} x z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{8-|b|} \otimes \mathcal{D}_{2}$; where $6 \leq|b|=\sum_{i=1}^{5} b_{i} \leq 8$ and $b_{1} \geq 2$.
- $Z_{32}^{(2)} y z_{21}^{\left(b_{1}\right)} x z_{21}^{\left(b_{2}\right)} x z_{21}^{\left(b_{3}\right)} x z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{1}$; where $7 \leq|b|=\sum_{i=1}^{5} b_{i} \leq 9$ and $b_{1} \geq 3$.
- $Z_{32} y Z_{32} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{1}$; where $6 \leq|b|=\sum_{i=1}^{4} b_{i} \leq 9$ and $b_{1} \geq 3$.
- $Z_{32}^{(3)} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{10-|b|} \otimes \mathcal{D}_{0}$; where $8 \leq|b|=\sum_{i=1}^{5} b_{i} \leq 10$ and $b_{1} \geq 4$.
- $Z_{32}^{\left(c_{1}\right)} y \mathcal{Z}_{32}^{\left(c_{2}\right)} y \mathcal{Z}_{21}^{\left(b_{1}\right)} x \mathcal{Z}_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{10-|b|} \otimes \mathcal{D}_{0}$; where $c_{1}+c_{2}=3,7 \leq|b|=\sum_{i=1}^{4} b_{i} \leq 10$ and $b_{1} \geq 4$.
- $Z_{32} y z_{32} y Z_{32} y z_{21}^{\left(b_{1}\right)} x z_{21}^{\left(b_{2}\right)} x z_{21}^{\left(b_{3}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{10-|b|} \otimes \mathcal{D}_{0}$; where $6 \leq|b|=\sum_{i=1}^{3} b_{i} \leq 10$ and $b_{1} \geq 4$.
- $Z_{32} y Z_{31} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{8-|b|} \otimes \mathcal{D}_{1}$; where $4 \leq|b|=\sum_{i=1}^{4} b_{i} \leq 8$ and $b_{1} \geq 1$.
- $Z_{32}^{(2)} y \mathcal{Z}_{31} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{0}$; where $5 \leq|b|=\sum_{i=1}^{4} b_{i} \leq 9$ and $b_{1} \geq 2$.
- $Z_{32} y Z_{32} y Z_{31} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{0}$; where $4 \leq|b|=\sum_{i=1}^{3} b_{i} \leq 9$ and $b_{1} \geq 2$.
- In dimension seven $\left(\mathcal{X}_{7}\right)$ we have the sum of the following terms:
- $Z_{21} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$.
- $Z_{32} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x Z_{21}^{\left(b_{6}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{8-|b|} \otimes \mathcal{D}_{2}$; where $7 \leq|b|=\sum_{i=1}^{6} b_{i} \leq 8$ and $b_{1} \geq 2$.
- $Z_{32} y Z_{32} y \mathcal{Z}_{21}^{\left(b_{1}\right)} x \mathcal{Z}_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x \mathcal{Z}_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{1}$; where $7 \leq|b|=\sum_{i=1}^{5} b_{i} \leq 9$ and e $b_{1} \geq 3$.
- $Z_{32}^{(2)} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x Z_{21}^{\left(b_{6}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{1}$; where $8 \leq|b|=\sum_{i=1}^{6} b_{i} \leq 9$ and $b_{1} \geq 3$.
- $Z_{32} y Z_{32} y Z_{32} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{10-|b|} \otimes \mathcal{D}_{1}$; where $7 \leq|b|=\sum_{i=1}^{4} b_{i} \leq 10$ and $b_{1} \geq 4$.
- $Z_{32}^{\left(c_{1}\right)} y Z_{32}^{\left(c_{2}\right)} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{10-|b|} \otimes \mathcal{D}_{0}$; where $c_{1}+c_{2}=3,8 \leq|b|=\sum_{i=1}^{5} b_{i} \leq 10$ and $b_{1} \geq 4$.
- $Z_{32}^{(3)} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x Z_{21}^{\left(b_{6}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{10-|b|} \otimes \mathcal{D}_{0}$; where $9 \leq|b|=\sum_{i=1}^{6} b_{i} \leq 10$ and $b_{1} \geq 4$.
- $Z_{32} y Z_{31} z \mathcal{Z}_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{8-|b|} \otimes \mathcal{D}_{1}$; where $5 \leq|b|=\sum_{i=1}^{5} b_{i} \leq 8$ and $b_{1} \geq 1$.
- $\mathcal{Z}_{32} y \mathcal{Z}_{32} y \mathcal{Z}_{31} z \mathcal{Z}_{21}^{\left(b_{1}\right)} x z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{0}$; where $5 \leq|b|=\sum_{i=1}^{4} b_{i} \leq 9$ and $b_{1} \geq 2$.
- $Z_{32}^{(2)} y Z_{31} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{0}$; where $6 \leq|b|=\sum_{i=1}^{5} b_{i} \leq 9$ and $b_{1} \geq 2$.
- In dimension eight $\left(\mathcal{X}_{8}\right)$ we have the sum of the following terms:
- $Z_{32} y Z_{21} x \mathcal{D}_{16} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{2}$.
- $Z_{32} y Z_{32} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x Z_{21}^{\left(b_{6}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{2}$; where $8 \leq|b|=\sum_{i=1}^{6} b_{i} \leq 9$ and $b_{1} \geq 3$.
- $Z_{32}^{(2)} y Z_{21}^{(3)} x Z_{21} x Z_{21} x \mathcal{Z}_{21} x Z_{21} x \mathcal{Z}_{21} x Z_{21} x \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$.
- $Z_{32} y \mathcal{Z}_{32} y \mathcal{Z}_{32} y \mathcal{Z}_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{10-|b|} \otimes \mathcal{D}_{0}$; where $8 \leq|b|=\sum_{i=1}^{5} b_{i} \leq 10$ and $b_{1} \geq 4$.
- $Z_{32}^{\left(c_{1}\right)} y Z_{32}^{\left(c_{2}\right)} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x Z_{21}^{\left(b_{6}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{10-|b|} \otimes \mathcal{D}_{0}$; where $c_{1}+c_{2}=3,9 \leq|b|=\sum_{i=1}^{6} b_{i} \leq 10$ and $b_{1} \geq 4$.
- $Z_{32}^{(3)} y Z_{21} x \mathcal{D}_{15} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{1}$.
- $Z_{32} y Z_{31} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x Z_{21}^{\left(b_{6}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{8-|b|} \otimes \mathcal{D}_{1}$; where $7 \leq|b|=\sum_{i=1}^{6} b_{i} \leq 8$ and $b_{1} \geq 2$.
- $Z_{32} y Z_{32} y Z_{31} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{0}$; where $6 \leq|b|=\sum_{i=1}^{5} b_{i} \leq 9$ and $b_{1} \geq 2$.
- $Z_{32}^{(2)} y Z_{31} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x Z_{21}^{\left(b_{6}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{0}$; where $7 \leq|b|=\sum_{i=1}^{6} b_{i} \leq 9$ and $b_{1} \geq 2$.
- In dimension nine (X_{9}) we have the sum of the following terms:
- $Z_{32} y Z_{32} y Z_{21}^{(3)} x z_{21} x z_{21} x z_{21} x Z_{21} x z_{21} x Z_{21} x \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$.
- $z_{32} y z_{32} y z_{32} y z_{21}^{\left(b_{1}\right)} x z_{21}^{\left(b_{2}\right)} x z_{21}^{\left(b_{3}\right)} x z_{21}^{\left(b_{4}\right)} x z_{21}^{\left(b_{5}\right)} x z_{21}^{\left(b_{6}\right)} x \mathcal{D}_{8+|b|} \otimes \mathcal{D}_{10-|b|} \otimes \mathcal{D}_{0}$; where $9 \leq|b|=\sum_{i=1}^{6} b_{i} \leq 10$ and $b_{1} \geq 4$.
- $Z_{32}^{\left(c_{1}\right)} y z_{32}^{\left(c_{2}\right)} y z_{21}^{(4)} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$; where $c_{1}+c_{2}=3$.
- $z_{32} y Z_{31} z Z_{21}^{\left(b_{1}\right)} x z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x z_{21}^{\left(b_{5}\right)} x z_{21}^{\left(b_{6}\right)} x Z_{21}^{\left(b_{7}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{8-|b|} \otimes \mathcal{D}_{1}$; where $7 \leq|b|=\sum_{i=1}^{6} b_{i} \leq 8$ and $b_{1} \geq 1$.
- $Z_{32} y Z_{32} y Z_{31} z Z_{21}^{\left(b_{1}\right)} x z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x z_{21}^{\left(b_{5}\right)} x z_{21}^{\left(b_{6}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{9-|b|} \otimes \mathcal{D}_{0}$; where $7 \leq|b|=\sum_{i=1}^{5} b_{i} \leq 9$ and $b_{1} \geq 2$.
- $z_{32}^{(2)} y Z_{31} z Z_{21}^{\left(b_{1}\right)} x z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x Z_{21}^{\left(b_{6}\right)} x Z_{21}^{\left(b_{7}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{9-|b|} \otimes$ \mathcal{D}_{0}; where $8 \leq|b|=\sum_{i=1}^{7} b_{i} \leq 9$ and $b_{1} \geq 1$.
- In dimension ten (X_{10}) we have the sum of the following terms:
- $Z_{32} y Z_{32} y Z_{32} y Z_{21}^{(4)} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$.
- $Z_{32} y Z_{31} z Z_{21} x \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$.
- $Z_{32} y Z_{32} y Z_{31} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x Z_{21}^{\left(b_{6}\right)} x Z_{21}^{\left(b_{7}\right)} x \mathcal{D}_{9+|b|} \otimes \mathcal{D}_{9-|b|}$ $\otimes \mathcal{D}_{0}$; where $8 \leq|b|=\sum_{i=1}^{5} b_{i} \leq 9$ and $b_{1} \geq 2$.
- $Z_{32}^{(2)} y Z_{31} z Z_{21}^{(2)} x Z_{21} x \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$.

Finally, in dimension eleven $\left(X_{11}\right)$ we have

- $Z_{32} y Z_{32} y z_{31} z Z_{21}^{(2)} x z_{21} x \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$.

3.2 Complex of Lascoux in the case of partition $(8,7,3)$

Proposition (3.2.1): The terms of Lascoux complex

The terms of the Lascoux complex are obtained by the determinantal expansion of the Jacobi-Trudi matrix of the partition, [3]. The positions of the terms of the complex are determined by the length of the permutation to which they correspond, [4].

In the case of partition (p, q, r) the matrix is

$$
\left[\begin{array}{ccc}
\mathcal{D}_{\mathfrak{p}} \mathcal{F} & \mathcal{D}_{\mathfrak{q}-1} \mathcal{F} & \mathcal{D}_{r-2} \mathcal{F} \\
\mathcal{D}_{\mathfrak{p}+1} \mathcal{F} & \mathcal{D}_{\mathfrak{q}} \mathcal{F} & \mathcal{D}_{r-1} \mathcal{F} \\
\mathcal{D}_{\mathfrak{p}+2} \mathcal{F} & \mathcal{D}_{\mathfrak{q}+1} \mathcal{F} & \mathcal{D}_{r} \mathcal{F}
\end{array}\right]
$$

In our case i.e. (8,7,3) we have the following matrix:

$$
\left[\begin{array}{ccc}
\mathcal{D}_{8} \mathcal{F} & \mathcal{D}_{6} \mathcal{F} & \mathcal{D}_{1} \mathcal{F} \\
\mathcal{D}_{9} \mathcal{F} & \mathcal{D}_{7} \mathcal{F} & \mathcal{D}_{2} \mathcal{F} \\
\mathcal{D}_{10} \mathcal{F} & \mathcal{D}_{8} \mathcal{F} & \mathcal{D}_{3} \mathcal{F}
\end{array}\right]
$$

Then the Lascaux complex has the correspondence between its terms as follows:
$\mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \quad \leftrightarrow$ identity
$\mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \leftrightarrow(12)$
$\mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \leftrightarrow(23)$
$\mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \leftrightarrow(132)$
$\mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \leftrightarrow(123)$
$\mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \leftrightarrow(13)$
Thus the formulation of the Lascoux resolution in the case of the partition $(8,7,3)$ is

$$
\mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \longrightarrow \begin{aligned}
& \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \\
& \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F}
\end{aligned} \longrightarrow \begin{aligned}
& \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \\
& \mathcal{D}_{8} \mathcal{F} \otimes \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}
\end{aligned} \longrightarrow \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}
$$

Proposition (3.2.2): Diagrams of the complex of Lascoux

Consider the following diagram:

$$
\begin{array}{cccc}
\mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \xrightarrow{d_{1}} & \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \xrightarrow{d_{2}} \mathcal{D}_{9} \mathcal{F} \otimes & \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \\
h_{1} \downarrow & h_{2} \downarrow & h_{3} & \downarrow h_{3} \\
\mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \xrightarrow{g_{1}} & \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \xrightarrow{g_{2}} & \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}
\end{array}
$$

If we define
$d_{1}: \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \longrightarrow \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}$ as
$d_{1}(v)=\partial_{32}(v)$; where $v \in \mathcal{D}_{10} \otimes \mathcal{D}_{7} \otimes \mathcal{D}_{1}$
$h_{1}: \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \longrightarrow \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F}$ as
$h_{1}(v)=\partial_{21}(v) ;$ where $v \in \mathcal{D}_{10} \otimes \mathcal{D}_{7} \otimes \mathcal{D}_{1}$,
and
$h_{2}: \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \longrightarrow \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}$ as
$h_{2}(v)=\partial_{21}^{(2)}(v)$; where $v \in \mathcal{D}_{10} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{2}$.
Now, we have to define the map
$\mathcal{g}_{1}: \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \longrightarrow \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}$,
which make the diagram Q commute, i.e.
$g_{1} \circ h_{1}=h_{2} \circ d_{1}$
Which implies that
$g_{1} \circ \partial_{21}=\partial_{21}^{(2)} \partial_{32}$
By employing Capelli identities we get:

$$
\begin{aligned}
\partial_{21}^{(2)} \partial_{32}= & \partial_{32} \partial_{21}^{(2)}-\partial_{31} \partial_{21} \\
& =\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right) \partial_{21}
\end{aligned}
$$

Thus, $g_{1}=\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}$
On the other hand, if we define the map
$\mathcal{g}_{2}: \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \longrightarrow \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}$ as
$g_{2}(v)=\partial_{32}(v)$; where $v \in \mathcal{D}_{8} \otimes \mathcal{D}_{8} \otimes \mathcal{D}_{2}$,
and
$h_{3}: \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \longrightarrow \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}$ as
$h_{3}(v)=\partial_{21}(v)$; where $v \in \mathcal{D}_{10} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{2}$
We need to define d_{2} to make the diagram \mathcal{T} commute
$d_{2}: \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \longrightarrow \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}$ such that
$h_{3} \circ d_{2}=g_{2} \circ h_{2} \quad$ i.e. $\quad \partial_{21} \circ d_{2}=\partial_{32} \partial_{21}^{(2)}$
By employing Capelli identities we have

$$
\begin{aligned}
\partial_{32} \partial_{21}^{(2)} & =\partial_{21}^{(2)} \partial_{32}+\partial_{21} \partial_{31} \\
& =\partial_{21}\left(\frac{1}{2} \partial_{21} \partial_{32}+\partial_{31}\right)
\end{aligned}
$$

Thus, $d_{2}=\frac{1}{2} \partial_{21} \partial_{32}+\partial_{31}$
Now consider the following diagram:

Define $w: \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \longrightarrow \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}$ by $w(v)=\partial_{32}^{(2)}(v)$; where $v \in \mathcal{D}_{9} \otimes \mathcal{D}_{8} \otimes \mathcal{D}_{1}$

Remark (3.2.3):

The diagram \mathcal{H} is commute.

Proof:

To prove the diagram \mathcal{H} is commute, it is sufficient to prove that

$$
d_{2} \circ d_{1}=w \circ h_{1}
$$

$$
\begin{aligned}
d_{2} \circ d_{1} & =\left(\frac{1}{2} \partial_{21} \partial_{32}+\partial_{31}\right) \partial_{32} \\
& =\partial_{21} \partial_{32}^{(2)}+\partial_{31} \partial_{32} \\
& =\partial_{32}^{(2)} \partial_{21}-\partial_{32} \partial_{31}+\partial_{31} \partial_{32} \\
& =\partial_{32}^{(2)} \partial_{21} \\
& =w \circ h_{1}
\end{aligned}
$$

Remark (3.2.4):

The diagram \mathcal{N} is commute.

Proof:

$$
\begin{aligned}
g_{2} \circ g_{1} & =\partial_{32}\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right) \\
& =\partial_{32}^{(2)} \partial_{21}-\partial_{32} \partial_{31} \\
& =\partial_{21} \partial_{32}^{(2)}+\partial_{32} \partial_{31}-\partial_{32} \partial_{31} \\
& =\partial_{21} \partial_{32}^{(2)} \\
& =h_{3} \circ w
\end{aligned}
$$

Eventually, we define the maps σ_{1}, σ_{2}, and σ_{3} as follows:

- $\sigma_{3}(x)=\left(d_{1}(x), h_{1}(x)\right) ; \forall x \in \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F}$
- $\sigma_{2}\left(\left(x_{1}, x_{2}\right)\right)=\left(d_{2}\left(x_{1}\right)-w\left(x_{2}\right), g_{1}\left(x_{2}\right)-h_{2}\left(x_{1}\right)\right)$;
$\forall x \in \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \oplus \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F}$
- $\sigma_{1}\left(\left(x_{1}, x_{2}\right)\right)=\left(h_{3}\left(x_{1}\right)+g_{2}\left(x_{2}\right)\right)$;
$\forall x \in \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \oplus \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} ;$
where

$$
\begin{aligned}
& \sigma_{3}: \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \longrightarrow \begin{array}{l}
\mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \\
\mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F}
\end{array}
\end{aligned}
$$

and

$$
\sigma_{1}: \begin{gathered}
\mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \\
\\
\\
\mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}
\end{gathered} \quad \longrightarrow \quad \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}
$$

Lemma (3.2.5):

$$
0 \longrightarrow \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \xrightarrow{\sigma_{3}} \begin{gathered}
\mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \\
\mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{\mathbf{8}} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F}
\end{gathered} \stackrel{\sigma_{2}}{ } \quad \begin{gathered}
\mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{\mathbf{3}} \mathcal{F} \\
\mathcal{D}_{\mathbf{8}} \mathcal{F} \otimes \mathcal{D}_{\mathbf{8}} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}
\end{gathered} \stackrel{\sigma_{1}}{\longrightarrow} \mathcal{D}_{\mathbf{8}} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{\mathbf{3}} \mathcal{F}
$$

is complex.

Proof:

From the definition of ∂_{21} and ∂_{32} they are injective [10], then we get σ_{3} is injective.

$$
\begin{aligned}
&\left(\sigma_{2} \circ \sigma_{3}\right)(x)=\sigma_{2}\left(d_{1}(x), h_{1}(x)\right) \\
&=\sigma_{2}\left(\partial_{32}(x), \partial_{21}(x)\right) \\
&=\left(d_{2}\left(\partial_{32}(x)\right)-w\left(\partial_{21}(x)\right), g_{1}\left(\partial_{21}(x)\right)-h_{2}\left(\partial_{32}(x)\right)\right) \\
& \begin{aligned}
d_{2}\left(\partial_{32}(x)\right)-w\left(\partial_{21}(x)\right) & =\left(\frac{1}{2} \partial_{21} \partial_{32}+\partial_{31}\right) \partial_{32}(x)-\partial_{32}^{(2)} \partial_{21}(x) \\
& =\left(\partial_{21} \partial_{32}^{(2)}+\partial_{31} \partial_{32}-\partial_{32}^{(2)} \partial_{21}\right)(x) \\
& =\left(\partial_{32}^{(2)} \partial_{21}-\partial_{32} \partial_{31}+\partial_{31} \partial_{32}-\partial_{32}^{(2)} \partial_{21}\right)(x) \\
& =0 \\
g_{1}\left(\partial_{21}(x)\right)-h_{2}\left(\partial_{32}(x)\right) & =\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right) \partial_{21}(x)-\partial_{21}^{(2)} \partial_{32}(x) \\
& =\left(\partial_{32} \partial_{21}^{(2)}-\partial_{31} \partial_{21}-\partial_{21}^{(2)} \partial_{32}\right)(x) \\
& =\left(\partial_{21}^{(2)} \partial_{32}+\partial_{21} \partial_{31}-\partial_{31} \partial_{21}-\partial_{21}^{(2)} \partial_{32}\right)(x) \\
& =0
\end{aligned}
\end{aligned}
$$

We have $\left(\sigma_{2} \circ \sigma_{3}\right)(x)=0$, and

$$
\begin{aligned}
&\left(\sigma_{1} \circ \sigma_{2}\right)\left(x_{1}, x_{2}\right)=\sigma_{1}\left(d_{2}\left(x_{1}\right)-w\left(x_{2}\right), g_{1}\left(x_{2}\right)-h_{2}\left(x_{1}\right)\right) \\
&= \sigma_{1}\left(\left(\frac{1}{2} \partial_{21} \partial_{32}+\partial_{31}\right)\left(x_{1}\right)-\partial_{32}^{(2)}\left(x_{2}\right),\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right)\left(x_{2}\right)-\partial_{21}^{(2)}\left(x_{1}\right)\right) \\
&=\left.\partial_{21}\left(\frac{1}{2} \partial_{21} \partial_{32}+\partial_{31}\right)\left(x_{1}\right)-\partial_{32}^{(2)}\left(x_{2}\right)\right)+\partial_{32}\left(\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right)\left(x_{2}\right)-\partial_{21}^{(2)}\left(x_{1}\right)\right) \\
&=\left(\partial_{21}^{(2)} \partial_{32}+\partial_{21} \partial_{31}-\partial_{32} \partial_{21}^{(2)}\right)\left(x_{1}\right)+\left(\partial_{32}^{(2)} \partial_{21}-\partial_{32} \partial_{31}-\partial_{21} \partial_{32}^{(2)}\right)\left(x_{2}\right) \\
&=\left(\partial_{32} \partial_{21}^{(2)}-\partial_{21} \partial_{31}+\partial_{21} \partial_{31}-\partial_{32} \partial_{21}^{(2)}\right)\left(x_{1}\right)+ \\
&\left(\partial_{32}^{(2)} \partial_{21}+\partial_{32} \partial_{31}-\partial_{32} \partial_{31}-\partial_{21} \partial_{32}^{(2)}\right)\left(x_{2}\right)=0
\end{aligned}
$$

3.3 Reduction from characteristic-free resolution to Lascoux resolution in the case of partition $(8,7,3)$

This section exhibits the connection between the characteristic-free resolution and the Lascoux resolution of the partition $(8,7,3)$.
The Lascoux resolution of the partition $(8,7,3)$ has the formulation

$$
\mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \longrightarrow \begin{aligned}
& \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \\
& \stackrel{\oplus}{\oplus} \\
& \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F}
\end{aligned} \longrightarrow \begin{aligned}
& \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \\
& \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}
\end{aligned} \longrightarrow \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}
$$

As in [18], we exhibit the terms of the complex (3.1.1) as:
$x_{0}=\mathcal{L}_{0}=\mathcal{M}_{0}$
$X_{1}=\mathcal{L}_{1} \oplus \mathcal{M}_{1}$
$x_{2}=\mathcal{L}_{2} \oplus \mathcal{M}_{2}$
$\mathcal{X}_{3}=\mathcal{L}_{3} \oplus \mathcal{M}_{3}$
$X_{\mathrm{j}}=\mathcal{M}_{\mathrm{j}}$; for $\mathrm{j}=4,5, \ldots, 11$;
where \mathcal{L}_{e} are the sum of the Lascoux terms and \mathcal{M}_{e} are the sum of the others.
Now, we define the map $\sigma_{1}: \mathcal{M}_{1} \longrightarrow \mathcal{L}_{1}$ such that

$$
\begin{equation*}
\delta_{\mathcal{L}_{1} \mathcal{L}_{0}} \circ \sigma_{1}=\delta_{\mathcal{M}_{1} \mathcal{M}_{0}} \tag{3.3.1}
\end{equation*}
$$

As follows:

- $Z_{21}^{(2)} x(v) \mapsto \frac{1}{2} Z_{21} x \partial_{21}(v)$
; where $v \in \mathcal{D}_{10} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{3}$
- $Z_{21}^{(3)} x(v) \mapsto \frac{1}{3} Z_{21} x \partial_{21}^{(2)}(v)$
; where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{3}$
- $z_{21}^{(4)} x(v) \mapsto \frac{1}{4} z_{21} x \partial_{21}^{(3)}(v)$; where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{3}$
- $Z_{21}^{(5)} x(v) \mapsto \frac{1}{5} z_{21} x \partial_{21}^{(4)}(v)$; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$
- $Z_{21}^{(6)} x(v) \mapsto \frac{1}{6} Z_{21} x \partial_{21}^{(5)}(v)$
; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$
- $Z_{21}^{(7)} x(v) \mapsto \frac{1}{7} z_{21} x \partial_{21}^{(6)}(v) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$
- $z_{32}^{(2)} y(v) \mapsto \frac{1}{2} z_{32} y \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{8} \otimes \mathcal{D}_{9} \otimes \mathcal{D}_{1}$
- $Z_{32}^{(3)} y(v) \mapsto \frac{1}{3} Z_{32} y \partial_{32}^{(2)}(v) \quad ;$ where $v \in \mathcal{D}_{8} \otimes \mathcal{D}_{10} \otimes \mathcal{D}_{0}$

It is clear that σ_{1} satisfies (3.3.1), then we can define

$$
\partial_{1}: \mathcal{L}_{1} \longrightarrow \mathcal{L}_{0} \quad \text { as } \quad \partial_{1}=\delta_{\mathcal{L}_{1} \mathcal{L}_{0}}
$$

At this point, we are in a position to define

$$
\partial_{2}: \mathcal{L}_{2} \longrightarrow \mathcal{L}_{1} \text { by } \partial_{2}=\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}
$$

Lemma (3.3.1):

The composition $\partial_{1} \partial_{2}$ equal to zero.

Proof:

$$
\begin{aligned}
\partial_{1} \partial_{2}(a) & =\delta_{\mathcal{L}_{1} \mathcal{L}_{0}} \circ\left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}(a)+\left(\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)(a)\right) \\
& =\delta_{\mathcal{L}_{1} \mathcal{L}_{0}} \circ \delta_{\mathcal{L}_{2} \mathcal{L}_{1}}(a)+\delta_{\mathcal{L}_{1} \mathcal{L}_{0}} \circ\left(\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)(a)
\end{aligned}
$$

But $\delta_{\mathcal{L}_{1} \mathcal{L}_{0}} \circ \sigma_{1}=\delta_{\mathcal{M}_{1} \mathcal{M}_{0}}$ then we get
$\partial_{1} \partial_{2}(a)=\delta_{\mathcal{L}_{1} \mathcal{L}_{0}} \circ \delta_{\mathcal{L}_{2} \mathcal{L}_{1}}(a)+\delta_{\mathcal{M}_{1} \mathcal{M}_{0}} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}(a)$
By properties of the boundary map δ we get
$\partial_{1} \partial_{2}=0$

We need to define the map $\sigma_{2}: \mathcal{M}_{2} \longrightarrow \mathcal{L}_{2}$ such that
$\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}=\left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right) \circ \sigma_{2}$
As follows:

- $Z_{21} x Z_{21} x(v) \mapsto 0$
- $Z_{21}^{(2)} x Z_{21} x(v) \mapsto 0$
- $Z_{21} x Z_{21}^{(2)} x(v) \mapsto 0 \quad ;$ where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{3}$
- $Z_{21}^{(3)} x Z_{21} x(v) \mapsto 0 \quad ;$ where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{3}$
- $Z_{21} x Z_{21}^{(3)} x(v) \mapsto 0$
- $Z_{21}^{(2)} x Z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{21}^{(4)} x Z_{21} x(v) \mapsto 0$
- $Z_{21} x Z_{21}^{(4)} x(v) \mapsto 0$
; where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{10} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$
- $Z_{21}^{(3)} x Z_{21}^{(2)} x(v) \longmapsto 0$
- $Z_{21}^{(2)} x Z_{21}^{(3)} x(v) \mapsto 0$
- $Z_{21}^{(5)} x Z_{21} x(v) \mapsto 0$
- $Z_{21} x Z_{21}^{(5)} x(v) \mapsto 0$
- $Z_{21}^{(3)} x Z_{21}^{(3)} x(v) \mapsto 0$
- $Z_{21}^{(4)} x Z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{21}^{(2)} x Z_{21}^{(4)} x(v) \mapsto 0$
- $Z_{21}^{(6)} x Z_{21} x(v) \mapsto 0$
- $Z_{21} x Z_{21}^{(6)} x(v) \mapsto 0$
- $Z_{21}^{(5)} x Z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{21}^{(2)} x Z_{21}^{(5)} x(v) \mapsto 0$
- $Z_{21}^{(4)} x Z_{21}^{(3)} x(v) \longmapsto 0$
- $Z_{21}^{(3)} x Z_{21}^{(4)} x(v) \mapsto 0$
- $Z_{32} y z_{21}^{(3)} x(v) \mapsto \frac{1}{3} z_{32} y Z_{21}^{(2)} x \partial_{21}(v)$
- $Z_{32} y Z_{21}^{(4)} x(v) \mapsto \frac{1}{6} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)}(v) \quad ;$ where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{2}$
- $Z_{32} y Z_{21}^{(5)} x(v) \mapsto \frac{1}{10} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)}(v) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{2}$
- $Z_{32} y Z_{21}^{(6)} x(v) \mapsto \frac{1}{15} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)}(v) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{2}$
- $Z_{32} y Z_{21}^{(7)} x(v) \mapsto \frac{1}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)}(v) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{2}$
- $Z_{32} y Z_{21}^{(8)} x(v) \mapsto \frac{1}{28} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)}(v) \quad ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{2}$
- $Z_{32} y \mathcal{Z}_{32} \mathcal{y}(v) \mapsto 0 \quad ;$ where $v \in \mathcal{D}_{8} \otimes \mathcal{D}_{9} \otimes \mathcal{D}_{1}$
- $Z_{32}^{(2)} y Z_{21}^{(3)} x(v) \mapsto \frac{1}{3}\left(Z_{32} y Z_{21}^{(2)} x \partial_{31}(v)-Z_{32} y Z_{31} z \partial_{21}^{(2)}(v)\right)$; where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{1}$
- $Z_{32}^{(2)} y Z_{21}^{(4)} x(v) \mapsto \frac{1}{12} Z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31}(v)-\frac{1}{4} z_{32} y Z_{31} z \partial_{21}^{(3)}(v)$; where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{1}$
; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{2}$
- $Z_{32}^{(2)} y Z_{21}^{(5)} x(v) \mapsto \frac{1}{30} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}(v)-\frac{1}{5} z_{32} y Z_{31} z \partial_{21}^{(4)}(v)$; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{1}$
- $Z_{32}^{(2)} y z_{21}^{(6)} x(v) \mapsto \frac{1}{60} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}(v)-\frac{1}{6} z_{32} y z_{31} z \partial_{21}^{(5)}(v)$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{1}$
- $Z_{32}^{(2)} y z_{21}^{(7)} x(v) \mapsto \frac{1}{105} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v)-\frac{1}{7} z_{32} y z_{31} z \partial_{21}^{(6)}(v)$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{1}$
- $z_{32}^{(2)} y z_{21}^{(8)} x(v) \mapsto \frac{1}{168} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)-\frac{1}{8} z_{32} y z_{31} z \partial_{21}^{(7)}(v)$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{1}$
- $Z_{32}^{(2)} y z_{21}^{(9)} x(v) \mapsto \frac{1}{252} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)-\frac{1}{9} z_{32} y z_{31} z \partial_{21}^{(8)}(v)$; where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$
- $z_{32}^{(2)} y z_{32} y(v) \mapsto 0 \quad ;$ where $v \in \mathcal{D}_{8} \otimes \mathcal{D}_{10} \otimes \mathcal{D}_{0}$
- $Z_{32} y z_{32}^{(2)} y(v) \mapsto 0 \quad ;$ where $v \in \mathcal{D}_{8} \otimes \mathcal{D}_{10} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y Z_{21}^{(4)} x(v) \mapsto \frac{1}{3} Z_{32} y Z_{21}^{(2)} x \partial_{31}^{(2)}(v)-\frac{1}{6} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}^{(2)}(v)-$ $\frac{1}{3} Z_{32} y Z_{31} z \partial_{21}^{(3)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y z_{21}^{(5)} x(v) \mapsto \frac{1}{9} z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31}^{(2)}(v)-\frac{7}{90} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)-$ $\frac{2}{9} z_{32} y Z_{31} z \partial_{21}^{(4)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y Z_{21}^{(6)} x(v) \mapsto \frac{1}{18} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-\frac{2}{45} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)-$ $\frac{1}{6} Z_{32} y Z_{31} z \partial_{21}^{(5)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y Z_{21}^{(7)} x(v) \mapsto \frac{1}{30} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\frac{1}{35} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)-$ $\frac{2}{15} z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y Z_{21}^{(8)} x(v) \mapsto \frac{1}{45} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{5}{252} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)-$ $\frac{1}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y z_{21}^{(9)} x(v) \mapsto \frac{1}{63} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)+\frac{1}{84} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)$; where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y Z_{21}^{(10)} x(v) \mapsto \frac{1}{84} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v) ;$ where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$
- $z_{32}^{(2)} y z_{31} z(v) \mapsto \frac{1}{3} z_{32} y z_{31} z \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{9} \otimes \mathcal{D}_{9} \otimes \mathcal{D}_{0}$

Proposition (3.3.2):

The map σ_{2} defined above satisfies (3.3.2).

Proof:

We can see that

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{10} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{3}$
$=\sigma_{1}\left(2 Z_{21}^{(2)} x(v)\right)-Z_{21} x \partial_{21}(v)$
$=\frac{2}{2} Z_{21} x \partial_{21}(v)-Z_{21} x \partial_{21}(v)=0$
- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21}^{(2)} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{3}$
$=\sigma_{1}\left(3 Z_{21}^{(3)} x(v)-Z_{21}^{(2)} x \partial_{21}(v)\right)$
$=\frac{3}{3} Z_{21} x \partial_{21}^{(2)}(v)-\frac{1}{2} Z_{21} x \partial_{21} \partial_{21}(v)$
$=Z_{21} x \partial_{21}^{(2)}(v)-\frac{2}{2} Z_{21} x \partial_{21}^{(2)}(v)=0$
- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21} x Z_{21}^{(2)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{3}$
$=\sigma_{1}\left(3 Z_{21}^{(3)} x(v)\right)-Z_{21} x \partial_{21}^{(2)}(v)$
$=\frac{3}{3} Z_{21} x \partial_{21}^{(2)}(v)-Z_{21} x \partial_{21}^{(2)}(v)$
$=0$
- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21}^{(3)} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{3}$
$=\sigma_{1}\left(4 Z_{21}^{(4)} x(v)-Z_{21}^{(3)} x \partial_{21}(v)\right)$
$=\frac{4}{4} Z_{21} x \partial_{21}^{(3)}(v)-\frac{3}{3} Z_{21} x \partial_{21}^{(3)}(v)$
$=0$

$$
\begin{aligned}
& \bullet\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(z_{21} x z_{21}^{(3)} x(v)\right) \quad ; \text { where } v \in \mathcal{D}_{12} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{3} \\
&= \sigma_{1}\left(4 Z_{21}^{(4)} x(v)\right)-z_{21} x \partial_{21}^{(3)}(v) \\
&= \frac{4}{4} z_{21} x \partial_{21}^{(3)}(v)-z_{21} x \partial_{21}^{(3)}(v) \\
&=0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21}^{(2)} x Z_{21}^{(2)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{3}$

$$
=\sigma_{1}\left(6 Z_{21}^{(4)} x(v)-Z_{21}^{(2)} x \partial_{21}^{(2)}(v)\right)
$$

$$
=\frac{6}{4} Z_{21} x \partial_{21}^{(3)}(v)-\frac{1}{2} Z_{21} x \partial_{21} \partial_{21}^{(2)}(v)
$$

$$
=\frac{3}{2} z_{21} x \partial_{21}^{(3)}(v)-\frac{3}{2} z_{21} x \partial_{21}^{(3)}(v)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(z_{21}^{(4)} x z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$

$$
=\sigma_{1}\left(5 Z_{21}^{(5)} x(v)-Z_{21}^{(4)} x \partial_{21}(v)\right)
$$

$$
=\frac{5}{5} z_{21} x \partial_{21}^{(4)}(v)-\frac{1}{4} z_{21} x \partial_{21}^{(3)} \partial_{21}(v)
$$

$$
=Z_{21} x \partial_{21}^{(4)}(v)-\frac{4}{4} Z_{21} x \partial_{21}^{(4)}(v)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(z_{21} x Z_{21}^{(4)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$
$=\sigma_{1}\left(5 Z_{21}^{(5)} x(v)\right)-Z_{21} x \partial_{21}^{(4)}(v)$
$=\frac{5}{5} Z_{21} x \partial_{21}^{(4)}(v)-Z_{21} x \partial_{21}^{(4)}(v)$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21}^{(3)} x Z_{21}^{(2)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$
$=\sigma_{1}\left(10 z_{21}^{(5)} x(v)-Z_{21}^{(3)} x \partial_{21}^{(2)}(v)\right)$
$=\frac{10}{5} z_{21} x \partial_{21}^{(4)}(v)-\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{21}^{(2)}(v)$

$$
\begin{aligned}
& =2 Z_{21} x \partial_{21}^{(4)}(v)-\frac{6}{3} Z_{21} x \partial_{21}^{(4)}(v) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21}^{(2)} x Z_{21}^{(3)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$
$=\sigma_{1}\left(10 Z_{21}^{(5)} x(v)-Z_{21}^{(2)} x \partial_{21}^{(3)}(v)\right)$
$=\frac{10}{5} Z_{21} x \partial_{21}^{(4)}(v)-\frac{1}{2} Z_{21} x \partial_{21} \partial_{21}^{(3)}(v)$
$=2 Z_{21} x \partial_{21}^{(4)}(v)-\frac{4}{2} Z_{21} x \partial_{21}^{(4)}(v)$
$=0$
- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21}^{(5)} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$
$=\sigma_{1}\left(6 Z_{21}^{(6)} x(v)-Z_{21}^{(5)} x \partial_{21}(v)\right)$
$=\frac{6}{6} Z_{21} x \partial_{21}^{(5)}(v)-\frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{21}(v)$
$=Z_{21} x \partial_{21}^{(5)}(v)-\frac{5}{5} Z_{21} x \partial_{21}^{(5)}(v)$
$=0$
- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21} x Z_{21}^{(5)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$
$=\sigma_{1}\left(6 Z_{21}^{(6)} x(v)\right)-Z_{21} x \partial_{21}^{(5)}(v)$
$=\frac{6}{6} z_{21} x \partial_{21}^{(5)}(v)-z_{21} x \partial_{21}^{(5)}(v)$
$=0$
- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21}^{(3)} x Z_{21}^{(3)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$
$=\sigma_{1}\left(20 Z_{21}^{(6)} x(v)-Z_{21}^{(3)} x \partial_{21}^{(3)}(v)\right)$
$=\frac{20}{6} z_{21} x \partial_{21}^{(5)}(v)-\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{21}^{(3)}(v)$
$=\frac{10}{3} z_{21} x \partial_{21}^{(5)}(v)-\frac{10}{3} z_{21} x \partial_{21}^{(5)}(v)$
$=0$
- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21}^{(2)} x Z_{21}^{(4)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$

$$
=\sigma_{1}\left(15 Z_{21}^{(6)} x(v)-Z_{21}^{(2)} x \partial_{21}^{(4)}(v)\right)
$$

$$
=\frac{15}{6} z_{21} x \partial_{21}^{(5)}(v)-\frac{1}{2} z_{21} x \partial_{21} \partial_{21}^{(4)}(v)
$$

$$
=\frac{5}{2} z_{21} x \partial_{21}^{(5)}(v)-\frac{5}{2} z_{21} x \partial_{21}^{(5)}(v)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21}^{(6)} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$

$$
=\sigma_{1}\left(7 Z_{21}^{(7)} x(v)-Z_{21}^{(6)} x \partial_{21}(v)\right)
$$

$$
=\frac{7}{7} z_{21} x \partial_{21}^{(6)}(v)-\frac{1}{6} z_{21} x \partial_{21}^{(5)} \partial_{21}(v)
$$

$$
=Z_{21} x \partial_{21}^{(6)}(v)-\frac{6}{6} Z_{21} x \partial_{21}^{(6)}(v)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21} x Z_{21}^{(6)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$
$=\sigma_{1}\left(7 Z_{21}^{(7)} x(v)\right)-Z_{21} x \partial_{21}^{(6)}(v)$
$=\frac{7}{7} Z_{21} x \partial_{21}^{(6)}(v)-Z_{21} x \partial_{21}^{(6)}(v)$
$=0$
- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21}^{(5)} x Z_{21}^{(2)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$
$=\sigma_{1}\left(21 Z_{21}^{(7)} x(v)-Z_{21}^{(5)} x \partial_{21}^{(2)}(v)\right)$

$$
\begin{aligned}
& \text { - }\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21}^{(4)} x Z_{21}^{(2)} x(v)\right) \quad ; \text { where } v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3} \\
& =\sigma_{1}\left(15 Z_{21}^{(6)} x(v)-Z_{21}^{(4)} x \partial_{21}^{(2)}(v)\right) \\
& =\frac{15}{6} Z_{21} x \partial_{21}^{(5)}(v)-\frac{1}{4} Z_{21} x \partial_{21}^{(3)} \partial_{21}^{(2)}(v) \\
& =\frac{5}{2} Z_{21} x \partial_{21}^{(5)}(v)-\frac{10}{4} Z_{21} x \partial_{21}^{(5)}(v) \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{21}{7} Z_{21} x \partial_{21}^{(6)}(v)-\frac{1}{5} Z_{21} x \partial_{21}^{(4)} \partial_{21}^{(2)}(v) \\
& =3 Z_{21} x \partial_{21}^{(6)}(v)-\frac{15}{5} Z_{21} x \partial_{21}^{(6)}(v) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21}^{(2)} x Z_{21}^{(5)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$
$=\sigma_{1}\left(21 Z_{21}^{(7)} x(v)-Z_{21}^{(2)} x \partial_{21}^{(5)}(v)\right)$
$=\frac{21}{7} Z_{21} x \partial_{21}^{(6)}(v)-\frac{1}{2} Z_{21} x \partial_{21} \partial_{21}^{(5)}(v)$
$=3 Z_{21} x \partial_{21}^{(6)}(v)-\frac{6}{2} z_{21} x \partial_{21}^{(6)}(v)$
$=0$
- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21}^{(4)} x Z_{21}^{(3)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$
$=\sigma_{1}\left(35 Z_{21}^{(7)} x(v)-Z_{21}^{(4)} x \partial_{21}^{(3)}(v)\right)$
$=\frac{35}{7} Z_{21} x \partial_{21}^{(6)}(v)-\frac{1}{4} Z_{21} x \partial_{21}^{(3)} \partial_{21}^{(3)}(v)$
$=5 Z_{21} x \partial_{21}^{(6)}(v)-\frac{20}{4} Z_{21} x \partial_{21}^{(6)}(v)$
$=0$
- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{21}^{(3)} x Z_{21}^{(4)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$
$=\sigma_{1}\left(35 Z_{21}^{(7)} x(v)-Z_{21}^{(3)} x \partial_{21}^{(4)}(v)\right)$
$=\frac{35}{7} Z_{21} x \partial_{21}^{(6)}(v)-\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{21}^{(4)}(v)$
$=5 Z_{21} x \partial_{21}^{(6)}(v)-\frac{15}{3} Z_{21} x \partial_{21}^{(6)}(v)$
$=0$
- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32} y Z_{21}^{(3)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{2}$

$$
\begin{aligned}
& =\sigma_{1}\left(Z_{21}^{(3)} x \partial_{32}(v)+Z_{21}^{(2)} x \partial_{31}(v)\right)-Z_{32} y \partial_{21}^{(3)}(v) \\
& =\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{32}(v)+\frac{1}{2} Z_{21} x \partial_{21} \partial_{31}(v)-Z_{32} y \partial_{21}^{(3)}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}(v)\right) \\
& =\sigma_{1}\left(\frac{1}{3} Z_{21}^{(2)} x \partial_{32} \partial_{21}(v)\right)+\frac{1}{3} Z_{21} x \partial_{31} \partial_{21}(v)-\frac{1}{3} Z_{32} y \partial_{21}^{(2)} \partial_{21}(v) \\
& =\frac{1}{6} Z_{21} x \partial_{21} \partial_{21} \partial_{32}(v)+\frac{1}{6} Z_{21} x \partial_{21} \partial_{31}(v)+\frac{1}{3} Z_{21} x \partial_{31} \partial_{21}(v)-Z_{32} y \partial_{21}^{(3)}(v) \\
& =\frac{1}{3} Z_{21} x \partial_{21}^{(2)} \partial_{32}(v)+\frac{1}{2} Z_{21} x \partial_{21} \partial_{31}(v)-Z_{32} y \partial_{21}^{(3)}(v) \\
& \bullet\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32} y Z_{21}^{(4)} x(v)\right) \quad ; \text { where } v \in \mathcal{D}_{12} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{2} \\
& =\sigma_{1}\left(Z_{21}^{(4)} x \partial_{32}(v)+Z_{21}^{(3)} x \partial_{31}(v)\right)-Z_{32} y \partial_{21}^{(4)}(v) \\
& =\frac{1}{4} Z_{21} x \partial_{21}^{(3)} \partial_{32}(v)+\frac{1}{3} Z_{21} x \partial_{21}^{(2)} \partial_{31}(v)-Z_{32} y \partial_{21}^{(4)}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{6} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)}(v)\right) \\
& =\sigma_{1}\left(\frac{1}{6} Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(2)}(v)\right)+\frac{1}{6} Z_{21} x \partial_{31} \partial_{21}^{(2)}(v)-\frac{1}{6} Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(2)}(v) \\
& =\frac{1}{12} Z_{21} x \partial_{21} \partial_{21}^{(2)} \partial_{32}(v)+\frac{1}{12} Z_{21} x \partial_{21} \partial_{21} \partial_{31}(v)+\frac{1}{6} Z_{21} x \partial_{31} \partial_{21}^{(2)}(v)- \\
& Z_{32} \mathcal{y} \partial_{21}^{(4)}(v) \\
& =\frac{1}{4} Z_{21} x \partial_{21}^{(3)} \partial_{32}(v)+\frac{1}{3} Z_{21} x \partial_{21}^{(2)} \partial_{31}(v)-Z_{32} y \partial_{21}^{(4)}(v)
\end{aligned}
$$

$$
\text { - }\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32} \mathcal{y} Z_{21}^{(5)} x(v)\right) \quad ; \text { where } v \in \mathcal{D}_{13} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{2}
$$

$$
=\sigma_{1}\left(Z_{21}^{(5)} x \partial_{32}(v)+Z_{21}^{(4)} x \partial_{31}(v)\right)-Z_{32} y \partial_{21}^{(5)}(v)
$$

$$
=\frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{32}(v)+\frac{1}{4} z_{21} x \partial_{21}^{(3)} \partial_{31}(v)-z_{32} y \partial_{21}^{(5)}(v)
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{10} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)}(v)\right) \\
& =\sigma_{1}\left(\frac{1}{10} z_{21}^{(2)} x \partial_{32} \partial_{21}^{(3)}(v)\right)+\frac{1}{10} z_{21} x \partial_{31} \partial_{21}^{(3)}(v)-\frac{1}{10} z_{32} y \partial_{21}^{(2)} \partial_{21}^{(3)}(v)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{20} Z_{21} x \partial_{21} \partial_{21}^{(3)} \partial_{32}(v)+\frac{1}{20} z_{21} x \partial_{21} \partial_{21}^{(2)} \partial_{31}(v)+\frac{1}{10} z_{21} x \partial_{31} \partial_{21}^{(3)}(v)- \\
& Z_{32} y \partial_{21}^{(5)}(v) \\
= & \frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{32}(v)+\frac{1}{4} z_{21} x \partial_{21}^{(3)} \partial_{31}(v)-z_{32} y \partial_{21}^{(5)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32} \mathcal{y} Z_{21}^{(6)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{2}$

$$
\begin{aligned}
& =\sigma_{1}\left(Z_{21}^{(6)} x \partial_{32}(v)+Z_{21}^{(5)} x \partial_{31}(v)\right)-Z_{32} y \partial_{21}^{(6)}(v) \\
& =\frac{1}{6} Z_{21} x \partial_{21}^{(5)} \partial_{32}(v)+\frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{31}(v)-Z_{32} y \partial_{21}^{(6)}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
&\left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{15} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)}(v)\right) \\
&= \sigma_{1}\left(\frac{1}{15} z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)}(v)\right)+\frac{1}{15} Z_{21} x \partial_{31} \partial_{21}^{(4)}(v)-\frac{1}{15} Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(4)}(v) \\
&= \frac{1}{30} Z_{21} x \partial_{21} \partial_{21}^{(4)} \partial_{32}(v)+\frac{1}{30} Z_{21} x \partial_{21} \partial_{21}^{(3)} \partial_{31}(v)+\frac{1}{15} Z_{21} x \partial_{31} \partial_{21}^{(4)}(v)- \\
& Z_{32} y \partial_{21}^{(6)}(v) \\
&= \frac{1}{6} Z_{21} x \partial_{21}^{(5)} \partial_{32}(v)+\frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{31}(v)-Z_{32} y \partial_{21}^{(6)}(v)
\end{aligned}
$$

$$
\cdot\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(z_{32} \mathcal{y} Z_{21}^{(7)} x(v)\right) \quad ; \text { where } v \in \mathcal{D}_{15} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{2}
$$

$$
=\sigma_{1}\left(Z_{21}^{(7)} x \partial_{32}(v)+Z_{21}^{(6)} x \partial_{31}(v)\right)-Z_{32} y \partial_{21}^{(7)}(v)
$$

$$
=\frac{1}{7} z_{21} x \partial_{21}^{(6)} \partial_{32}(v)+\frac{1}{6} z_{21} x \partial_{21}^{(5)} \partial_{31}(v)-z_{32} y \partial_{21}^{(7)}(v)
$$

And

$$
\begin{aligned}
&\left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)}(v)\right) \\
&= \sigma_{1}\left(\frac{1}{21} Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)}(v)\right)+\frac{1}{21} Z_{21} x \partial_{31} \partial_{21}^{(5)}(v)-\frac{1}{21} Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)}(v) \\
&= \frac{1}{42} Z_{21} x \partial_{21} \partial_{21}^{(5)} \partial_{32}(v)+\frac{1}{42} Z_{21} x \partial_{21} \partial_{21}^{(4)} \partial_{31}(v)+\frac{1}{21} Z_{21} x \partial_{31} \partial_{21}^{(5)}(v)- \\
& Z_{32} \mathcal{y} \partial_{21}^{(7)}(v) \\
&= \frac{1}{7} Z_{21} x \partial_{21}^{(6)} \partial_{32}(v)+\frac{1}{6} Z_{21} x \partial_{21}^{(5)} \partial_{31}(v)-Z_{32} y \partial_{21}^{(7)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32} y Z_{21}^{(8)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{2}$

$$
\begin{aligned}
& =z_{21}^{(8)} x \partial_{32}(v)+\sigma_{1}\left(z_{21}^{(7)} x \partial_{31}(v)\right)-z_{32} y \partial_{21}^{(8)}(v) \\
& =\frac{1}{7} z_{21} x \partial_{21}^{(6)} \partial_{31}(v)-z_{32} y \partial_{21}^{(8)}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{28} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)}(v)\right) \\
& =\sigma_{1}\left(\frac{1}{28} z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)}(v)\right)+\frac{1}{28} z_{21} x \partial_{31} \partial_{21}^{(6)}(v)-\frac{1}{28} z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)}(v) \\
& =\frac{1}{56} z_{21} x \partial_{21} \partial_{21}^{(5)} \partial_{31}(v)+\frac{1}{28} z_{21} x \partial_{31} \partial_{21}^{(6)}(v)-z_{32} y \partial_{21}^{(8)}(v) \\
& =\frac{1}{7} z_{21} x \partial_{21}^{(6)} \partial_{31}(v)-z_{32} y \partial_{21}^{(8)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32} y Z_{32} \mathcal{y}(v)\right) \quad ;$ where $v \in \mathcal{D}_{8} \otimes \mathcal{D}_{9} \otimes \mathcal{D}_{1}$
$=\sigma_{1}\left(2 z_{32}^{(2)} y(v)\right)-Z_{32} y \partial_{32}(v)$

$$
=\frac{2}{2} z_{32} y \partial_{32}(v)-z_{32} y \partial_{32}(v)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(z_{32}^{(2)} y z_{21}^{(3)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{1}$
$=\sigma_{1}\left(z_{21}^{(3)} x \partial_{32}^{(2)}(v)+z_{21}^{(2)} x \partial_{32} \partial_{31}(v)\right)+z_{21} x \partial_{31}^{(2)}(v)-\sigma_{1}\left(z_{32}^{(2)} y \partial_{21}^{(3)}(v)\right)$
$=\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{32}^{(2)}(v)+\frac{1}{2} z_{21} x \partial_{21} \partial_{32} \partial_{31}(v)+Z_{21} x \partial_{31}^{(2)}(v)-\frac{1}{2} Z_{32} y \partial_{32} \partial_{21}^{(3)}(v)$
And

$$
\begin{aligned}
&\left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} M_{1}}\right)\left(\frac{1}{3} Z_{32} y z_{21}^{(2)} x \partial_{31}(v)-\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(2)}(v)\right) \\
&= \sigma_{1}\left(\frac{1}{3} z_{21}^{(2)} x \partial_{32} \partial_{31}(v)\right)+\frac{1}{3} z_{21} x \partial_{31} \partial_{31}(v)-\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{31}(v)- \\
& \sigma_{1}\left(\frac{1}{3} z_{32}^{(2)} y \partial_{21} \partial_{21}^{(2)}(v)\right)+\frac{1}{3} z_{21} x \partial_{32}^{(2)} \partial_{21}^{(2)}(v)+\frac{1}{3} z_{32} y \partial_{31} \partial_{21}^{(2)}(v) \\
&= \frac{1}{6} z_{21} x \partial_{21} \partial_{32} \partial_{31}(v)+\frac{2}{3} z_{21} x \partial_{31}^{(2)}(v)-\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{31}(v)- \\
& \frac{1}{2} z_{32} y \partial_{32} \partial_{21}^{(3)}(v)+\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{32}^{(2)}(v)+\frac{1}{3} z_{21} x \partial_{21} \partial_{32} \partial_{31}(v)+
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{3} z_{21} x \partial_{31}^{(2)}(v)+\frac{1}{3} z_{32} y \partial_{31} \partial_{21}^{(2)}(v) \\
= & \frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{32}^{(2)}(v)+\frac{1}{2} z_{21} x \partial_{21} \partial_{32} \partial_{31}(v)+Z_{21} x \partial_{31}^{(2)}(v)-\frac{1}{2} z_{32} y \partial_{32} \partial_{21}^{(3)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(4)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{1}$

$$
=\sigma_{1}\left(Z_{21}^{(4)} x \partial_{32}^{(2)}(v)+Z_{21}^{(3)} x \partial_{32} \partial_{31}(v)+z_{21}^{(2)} x \partial_{31}^{(2)}(v)-z_{32}^{(2)} y \partial_{21}^{(4)}(v)\right)
$$

$$
=\frac{1}{4} z_{21} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)+\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)+\frac{1}{2} z_{21} x \partial_{21} \partial_{31}^{(2)}(v)-
$$

$$
\frac{1}{2} z_{32} y \partial_{32} \partial_{21}^{(4)}(v)
$$

And

$$
\begin{aligned}
(& \left.\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{12} Z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31}(v)-\frac{1}{4} Z_{32} y Z_{31} z \partial_{21}^{(3)}(v)\right) \\
= & \sigma_{1}\left(\frac{1}{12} Z_{21}^{(2)} x \partial_{32} \partial_{21} \partial_{31}(v)\right)+\frac{1}{12} Z_{21} x \partial_{31} \partial_{21} \partial_{31}(v)- \\
& \frac{1}{12} Z_{32} y \partial_{21}^{(2)} \partial_{21} \partial_{31}(v)-\sigma_{1}\left(\frac{1}{4} Z_{32}^{(2)} y \partial_{21} \partial_{21}^{(3)}(v)\right)+\frac{1}{4} z_{21} x \partial_{32}^{(2)} \partial_{21}^{(3)}(v)+ \\
& \frac{1}{4} Z_{32} y \partial_{31} \partial_{21}^{(3)}(v) \\
= & \frac{1}{12} Z_{21} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)+\frac{3}{12} Z_{21} x \partial_{21} \partial_{31}^{(2)}(v)-\frac{3}{12} z_{32} y \partial_{21}^{(3)} \partial_{31}(v)- \\
& \frac{1}{2} Z_{32} y \partial_{32} \partial_{21}^{(4)}(v)+\frac{1}{4} Z_{21} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)+\frac{1}{4} Z_{21} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)+ \\
& \frac{1}{4} z_{21} x \partial_{21} \partial_{31}^{(2)}(v)+\frac{1}{4} z_{32} y \partial_{31} \partial_{21}^{(3)}(v) \\
= & \frac{1}{4} Z_{21} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)+\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)+\frac{1}{2} Z_{21} x \partial_{21} \partial_{31}^{(2)}(v)- \\
& \frac{1}{2} Z_{32} y \partial_{32} \partial_{21}^{(4)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(5)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{1}$

$$
\begin{aligned}
= & \sigma_{1}\left(z_{21}^{(5)} x \partial_{32}^{(2)}(v)+Z_{21}^{(4)} x \partial_{32} \partial_{31}(v)+z_{21}^{(3)} x \partial_{31}^{(2)}(v)-z_{32}^{(2)} y \partial_{21}^{(5)}(v)\right) \\
= & \frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)+\frac{1}{4} z_{21} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)+\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)- \\
& \frac{1}{2} Z_{32} y \partial_{32} \partial_{21}^{(5)}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
(& \left.\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{30} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}(v)-\frac{1}{5} z_{32} y z_{31} z \partial_{21}^{(4)}(v)\right) \\
= & \sigma_{1}\left(\frac{1}{30} z_{21}^{(2)} x \partial_{32} \partial_{21}^{(2)} \partial_{31}(v)\right)+\frac{1}{30} z_{21} x \partial_{31} \partial_{21}^{(2)} \partial_{31}(v)- \\
& \frac{1}{30} Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(2)} \partial_{31}(v)-\sigma_{1}\left(\frac{1}{5} z_{32}^{(2)} y \partial_{21} \partial_{21}^{(4)}(v)\right)+\frac{1}{5} z_{21} x \partial_{32}^{(2)} \partial_{21}^{(4)}(v)+ \\
& \frac{1}{5} Z_{32} y \partial_{31} \partial_{21}^{(4)}(v) \\
= & \frac{3}{60} z_{21} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)+\frac{4}{30} z_{21} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-\frac{6}{30} z_{32} y \partial_{21}^{(4)} \partial_{31}(v)- \\
& \frac{5}{10} Z_{32} y \partial_{32} \partial_{21}^{(5)}(v)+\frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)+\frac{1}{5} z_{21} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)+ \\
& \frac{1}{5} z_{21} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)+\frac{1}{5} z_{32} y \partial_{31} \partial_{21}^{(4)}(v) \\
= & \frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)+\frac{1}{4} z_{21} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)+\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)- \\
& \frac{1}{2} Z_{32} y \partial_{32} \partial_{21}^{(5)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(6)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{1}$

$$
\begin{aligned}
= & \sigma_{1}\left(Z_{21}^{(6)} x \partial_{32}^{(2)}(v)+Z_{21}^{(5)} x \partial_{32} \partial_{31}(v)+z_{21}^{(4)} x \partial_{31}^{(2)}(v)-z_{32}^{(2)} y \partial_{21}^{(6)}(v)\right) \\
= & \frac{1}{6} z_{21} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)+\frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)+\frac{1}{4} z_{21} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)- \\
& \frac{1}{2} z_{32} y \partial_{32} \partial_{21}^{(6)}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
(& \left.\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{60} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}(v)-\frac{1}{6} z_{32} y z_{31} z \partial_{21}^{(5)}(v)\right) \\
= & \sigma_{1}\left(\frac{1}{60} z_{21}^{(2)} x \partial_{32} \partial_{21}^{(3)} \partial_{31}(v)\right)+\frac{1}{60} z_{21} x \partial_{31} \partial_{21}^{(3)} \partial_{31}(v)- \\
& \left.\left.\frac{1}{60} z_{32} y \partial_{21}^{(}\right) \partial_{21}^{(}\right) \partial_{31}(v)-\sigma_{1}\left(\frac{1}{6} z_{32}^{(2)} y \partial_{21} \partial_{21}^{(5)}(v)\right)+\frac{1}{6} z_{21} x \partial_{32}^{(2)} \partial_{21}^{(5)}(v)+ \\
& \frac{1}{6} Z_{32} y \partial_{31} \partial_{21}^{(5)}(v) \\
= & \frac{2}{60} z_{21} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)+\frac{5}{60} Z_{21} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\frac{10}{60} z_{32} y \partial_{21}^{(5)} \partial_{31}(v)- \\
& \frac{3}{6} z_{32} y \partial_{32} \partial_{21}^{(6)}(v)+\frac{1}{6} z_{21} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)+\frac{1}{6} z_{21} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)+
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{6} z_{21} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)+\frac{1}{6} z_{32} y \partial_{31} \partial_{21}^{(5)}(v) \\
= & \frac{1}{6} z_{21} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)+\frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)+\frac{1}{4} z_{21} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)- \\
& \frac{1}{2} z_{32} y \partial_{32} \partial_{21}^{(6)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(7)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{1}$

$$
\begin{aligned}
= & \sigma_{1}\left(Z_{21}^{(7)} x \partial_{32}^{(2)}(v)+Z_{21}^{(6)} x \partial_{32} \partial_{31}(v)+Z_{21}^{(5)} x \partial_{31}^{(2)}(v)-z_{32}^{(2)} y \partial_{21}^{(7)}(v)\right) \\
= & \frac{1}{7} Z_{21} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)+\frac{1}{6} z_{21} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)+\frac{1}{5} Z_{21} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)- \\
& \frac{1}{2} Z_{32} y \partial_{32} \partial_{21}^{(7)}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
(& \left.\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{105} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v)-\frac{1}{7} z_{32} y Z_{31} z \partial_{21}^{(6)}(v)\right) \\
= & \sigma_{1}\left(\frac{1}{105} Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)} \partial_{31}(v)\right)+\frac{1}{105} Z_{21} x \partial_{31} \partial_{21}^{(4)} \partial_{31}(v)- \\
& \frac{1}{105} z_{32} y \partial_{21}^{(2)} \partial_{21}^{(4)} \partial_{31}(v)-\sigma_{1}\left(\frac{1}{7} z_{32}^{(2)} y \partial_{21} \partial_{21}^{(6)}(v)\right)+\frac{1}{7} Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)}(v)+ \\
& \frac{1}{7} Z_{32} y \partial_{31} \partial_{21}^{(6)}(v) \\
= & \frac{5}{210} Z_{21} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)+\frac{6}{105} Z_{21} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{15}{105} z_{32} y \partial_{21}^{(6)} \partial_{31}(v)- \\
& \frac{7}{14} Z_{32} y \partial_{32} \partial_{21}^{(7)}(v)+\frac{1}{7} Z_{21} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)+\frac{1}{7} Z_{21} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)+ \\
& \frac{1}{7} Z_{21} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)+\frac{1}{7} Z_{32} y \partial_{31} \partial_{21}^{(6)}(v) \\
= & \frac{1}{6} Z_{21} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)+\frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{1}{2} Z_{32} y \partial_{32} \partial_{21}^{(7)}(v)+ \\
& \frac{1}{7} Z_{21} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(8)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{1}$
$=Z_{21}^{(8)} x \partial_{32}^{(2)}(v)+\sigma_{1}\left(Z_{21}^{(7)} x \partial_{32} \partial_{31}(v)+Z_{21}^{(6)} x \partial_{31}^{(2)}(v)-Z_{32}^{(2)} y \partial_{21}^{(8)}(v)\right)$
$=\frac{1}{7} z_{21} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)+\frac{1}{6} z_{21} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{1}{2} z_{32} y \partial_{32} \partial_{21}^{(8)}(v)$

And

$$
\begin{aligned}
&\left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{168} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)-\frac{1}{8} Z_{32} y Z_{31} z \partial_{21}^{(7)}(v)\right) \\
&= \sigma_{1}\left(\frac{1}{168} Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)} \partial_{31}(v)\right)+\frac{1}{168} Z_{21} x \partial_{31} \partial_{21}^{(5)} \partial_{31}(v)- \\
& \frac{1}{168} Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)} \partial_{31}(v)-\sigma_{1}\left(\frac{1}{8} z_{32}^{(2)} y \partial_{21} \partial_{21}^{(7)}(v)\right)+\frac{1}{8} Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)}(v)+ \\
& \frac{1}{8} Z_{32} y \partial_{31} \partial_{21}^{(7)}(v) \\
&= \frac{3}{168} Z_{21} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)+\frac{7}{168} Z_{21} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{21}{168} Z_{32} y \partial_{21}^{(7)} \partial_{31}(v)- \\
& \frac{4}{8} Z_{32} y \partial_{32} \partial_{21}^{(8)}(v)+\frac{1}{8} Z_{21} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)+\frac{1}{8} z_{21} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)+ \\
& \frac{1}{8} z_{32} y \partial_{31} \partial_{21}^{(7)}(v) \\
&= \frac{1}{7} Z_{21} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)+\frac{1}{6} z_{21} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{1}{2} z_{32} y \partial_{32} \partial_{21}^{(8)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(9)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$

$$
\begin{aligned}
& =Z_{21}^{(9)} x \partial_{31}^{(2)}(v)+Z_{21}^{(8)} x \partial_{32} \partial_{31}(v)+\sigma_{1}\left(Z_{21}^{(7)} x \partial_{31}^{(2)}(v)-Z_{32}^{(2)} y \partial_{21}^{(9)}(v)\right) \\
& =\frac{1}{7} Z_{21} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{1}{2} z_{32} y \partial_{32} \partial_{21}^{(9)}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
&(\left.\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{252} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)-\frac{1}{9} Z_{32} y Z_{31} z \partial_{21}^{(8)}(v)\right) \\
&= \sigma_{1}\left(\frac{1}{252} Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{31}(v)\right)+\frac{1}{252} Z_{21} x \partial_{31} \partial_{21}^{(6)} \partial_{31}(v)- \\
& \frac{1}{252} Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{31}(v)-\sigma_{1}\left(\frac{1}{9} Z_{32}^{(2)} y \partial_{21} \partial_{21}^{(8)}(v)\right)+\frac{1}{9} z_{21} x \partial_{32}^{(2)} \partial_{21}^{(8)}(v)+ \\
& \frac{1}{9} Z_{32} y \partial_{31} \partial_{21}^{(8)}(v) \\
&= \frac{8}{252} Z_{21} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{28}{252} z_{32} y \partial_{21}^{(8)} \partial_{31}(v)-\frac{9}{18} z_{32} y \partial_{32} \partial_{21}^{(9)}(v)+ \\
& \frac{1}{9} Z_{21} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)+\frac{1}{9} Z_{32} y \partial_{31} \partial_{21}^{(8)}(v) \\
&= \frac{1}{7} Z_{21} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{1}{2} Z_{32} y \partial_{32} \partial_{21}^{(9)}(v)
\end{aligned}
$$

$$
\begin{aligned}
- & \left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(z_{32}^{(2)} y z_{32} y(v)\right) \quad ; \text { where } v \in \mathcal{D}_{8} \otimes \mathcal{D}_{10} \otimes \mathcal{D}_{0} \\
= & \sigma_{1}\left(3 z_{32}^{(3)} y(v)-Z_{32}^{(2)} y \partial_{32}(v)\right) \\
= & \frac{3}{3} z_{32} y \partial_{32}^{(2)}(v)-\frac{2}{2} z_{32} y \partial_{32}^{(2)}(v) \\
= & 0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32} y Z_{32}^{(2)} y(v)\right) \quad ;$ where $v \in \mathcal{D}_{8} \otimes \mathcal{D}_{10} \otimes \mathcal{D}_{0}$

$$
=\sigma_{1}\left(3 z_{32}^{(3)} y(v)\right)-z_{32} y \partial_{32}^{(2)}(v)
$$

$$
=\frac{3}{3} z_{32} y \partial_{32}^{(2)}(v)-z_{32} y \partial_{32}^{(2)}(v)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(z_{32}^{(3)} y Z_{21}^{(4)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{0}$

$$
\begin{aligned}
= & \sigma_{1}\left(Z_{21}^{(4)} x \partial_{32}^{(3)}(v)+Z_{21}^{(3)} x \partial_{32}^{(2)} \partial_{31}(v)+Z_{21}^{(2)} x \partial_{32} \partial_{31}^{(2)}(v)\right)+Z_{21} x \partial_{31}^{(3)}(v)- \\
& \sigma_{1}\left(Z_{32}^{(3)} y \partial_{21}^{(4)}(v)\right) \\
= & \frac{1}{4} z_{21} x \partial_{21}^{(3)} \partial_{32}^{(3)}(v)+\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{1}{2} z_{21} x \partial_{21} \partial_{32} \partial_{31}^{(2)}(v)+ \\
& z_{21} x \partial_{31}^{(3)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(4)} \partial_{32}^{(2)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(3)} \partial_{32} \partial_{31}-\frac{1}{3} z_{32} y \partial_{21}^{(2)} \partial_{31}^{(2)}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{31}^{(2)}(v)-\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}^{(2)}(v)-\right. \\
& \left.\quad \frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{32}(v)\right) \\
& =\sigma_{1}\left(\frac{1}{3} z_{21}^{(2)} x \partial_{32} \partial_{31}^{(2)}(v)\right)+\frac{1}{3} z_{21} x \partial_{31} \partial_{31}^{(2)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(2)} \partial_{31}^{(2)}(v)- \\
& \sigma_{1}\left(\frac{1}{6} z_{21}^{(2)} x \partial_{32} \partial_{21}^{(2)} \partial_{32}^{(2)}(v)\right)-\frac{1}{6} z_{21} x \partial_{31} \partial_{21}^{(2)} \partial_{32}^{(2)}(v)+ \\
& Z_{32} y \partial_{21}^{(4)} \partial_{32}^{(2)}(v)-\sigma_{1}\left(\frac{1}{3} z_{32}^{(2)} y \partial_{21} \partial_{21}^{(3)} \partial_{32}(v)\right)+\frac{1}{3} z_{21} x \partial_{32}^{(2)} \partial_{21}^{(3)} \partial_{32}(v)+ \\
& \frac{1}{3} z_{32} y \partial_{31} \partial_{21}^{(3)} \partial_{32}(v) \\
& =\frac{1}{6} z_{21} x \partial_{21} \partial_{32} \partial_{31}^{(2)}(v)+\frac{3}{3} z_{21} x \partial_{31}^{(3)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-
\end{aligned}
$$

$$
\begin{aligned}
& \frac{9}{12} Z_{21} x \partial_{21}^{(3)} \partial_{32}^{(3)}(v)-\frac{2}{6} Z_{21} x \partial_{21}^{(2)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{6}{6} Z_{32} y \partial_{21}^{(4)} \partial_{32}^{(2)}(v)- \\
& \frac{4}{3} Z_{32} y \partial_{21}^{(4)} \partial_{32}^{(2)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)+\frac{3}{3} Z_{21} x \partial_{21}^{(3)} \partial_{32}^{(3)}(v)+ \\
& \frac{2}{3} Z_{21} x \partial_{21}^{(2)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{1}{3} Z_{21} x \partial_{21} \partial_{32} \partial_{31}^{(2)}(v) \\
= & \frac{1}{4} Z_{21} x \partial_{21}^{(3)} \partial_{32}^{(3)}(v)+\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{1}{2} z_{21} x \partial_{21} \partial_{32} \partial_{31}^{(2)}(v)+ \\
& Z_{21} x \partial_{31}^{(3)}(v)-\frac{1}{3} Z_{32} y \partial_{21}^{(4)} \partial_{32}^{(2)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(3)} \partial_{32} \partial_{31}-\frac{1}{3} z_{32} y \partial_{21}^{(2)} \partial_{31}^{(2)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(5)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{0}$

$$
\begin{aligned}
= & \sigma_{1}\left(Z_{21}^{(5)} x \partial_{32}^{(3)}(v)+Z_{21}^{(4)} x \partial_{32}^{(2)} \partial_{31}(v)+z_{21}^{(3)} x \partial_{32} \partial_{31}^{(2)}(v)+z_{21}^{(2)} x \partial_{31}^{(3)}(v)-\right. \\
& \left.z_{32}^{(3)} y \partial_{21}^{(5)}(v)\right) \\
= & \frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{32}^{(3)}(v)+\frac{1}{4} z_{21} x \partial_{21}^{(3)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{32} \partial_{31}^{(2)}(v)+ \\
& \frac{1}{2} z_{21} x \partial_{21} \partial_{31}^{(3)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(5)} \partial_{32}^{(2)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(4)} \partial_{32} \partial_{31}- \\
& \frac{1}{3} z_{32} y \partial_{21}^{(3)} \partial_{31}^{(2)}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31}^{(2)}(v)-\frac{7}{90} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)-\right. \\
& \left.\frac{2}{9} Z_{32} y Z_{31} z \partial_{21}^{(4)} \partial_{32}(v)\right) \\
& =\sigma_{1}\left(\frac{1}{9} Z_{21}^{(2)} x \partial_{32} \partial_{21} \partial_{31}^{(2)}(v)\right)+\frac{1}{9} z_{21} x \partial_{31} \partial_{21} \partial_{31}^{(2)}(v)- \\
& \frac{1}{9} Z_{32} y \partial_{21}^{(2)} \partial_{21} \partial_{31}^{(2)}(v)-\sigma_{1}\left(\frac{7}{90} Z_{21}^{(2)} x \partial_{23} \partial_{21}^{(3)} \partial_{32}^{(2)}(v)\right)- \\
& \frac{7}{90} Z_{21} x \partial_{31} \partial_{21}^{(3)} \partial_{32}^{(2)}(v)+\frac{7}{90} Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(3)} \partial_{32}^{(2)}(v)- \\
& \sigma_{1}\left(\frac{2}{9} Z_{32}^{(2)} y \partial_{21} \partial_{21}^{(4)} \partial_{32}(v)\right)+\frac{2}{9} Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(4)} \partial_{32}(v)+\frac{2}{9} Z_{32} y \partial_{31} \partial_{21}^{(4)} \partial_{32}(v) \\
& =\frac{1}{9} Z_{21} x \partial_{21}^{(2)} \partial_{32} \partial_{31}^{(2)}(v)+\frac{9}{18} z_{21} x \partial_{21} \partial_{31}^{(3)}(v)-\frac{3}{9} z_{32} y \partial_{21}^{(3)} \partial_{31}^{(2)}(v)- \\
& \frac{42}{90} Z_{21} x \partial_{21}^{(4)} \partial_{32}^{(3)}(v)-\frac{35}{180} z_{21} x \partial_{21}^{(3)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{70}{90} z_{32} y \partial_{21}^{(5)} \partial_{32}^{(2)}(v)- \\
& \frac{10}{9} z_{32} y \partial_{21}^{(5)} \partial_{32}^{(2)}(v)-\frac{6}{18} z_{32} y \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)+\frac{6}{9} z_{21} x \partial_{21}^{(4)} \partial_{32}^{(3)}(v)+
\end{aligned}
$$

$$
\begin{aligned}
& \frac{4}{9} z_{21} x \partial_{21}^{(3)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{2}{9} z_{21} x \partial_{21}^{(2)} \partial_{32} \partial_{31}^{(2)}(v) \\
= & \frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{32}^{(3)}(v)+\frac{1}{4} z_{21} x \partial_{21}^{(3)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{32} \partial_{31}^{(2)}(v)+ \\
& \frac{1}{2} z_{21} x \partial_{21} \partial_{31}^{(3)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(5)} \partial_{32}^{(2)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(4)} \partial_{32} \partial_{31}- \\
& \frac{1}{3} z_{32} y \partial_{21}^{(3)} \partial_{31}^{(2)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(6)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{0}$

$$
=\sigma_{1}\left(Z_{21}^{(6)} x \partial_{32}^{(3)}(v)+Z_{21}^{(5)} x \partial_{32}^{(2)} \partial_{31}(v)+Z_{21}^{(4)} x \partial_{32} \partial_{31}^{(2)}(v)+Z_{21}^{(3)} x \partial_{31}^{(3)}(v)-\right.
$$

$$
\left.z_{32}^{(3)} y \partial_{21}^{(6)}(v)\right)
$$

$$
=\frac{1}{6} z_{21} x \partial_{21}^{(5)} \partial_{32}^{(3)}(v)+\frac{1}{5} Z_{21} x \partial_{21}^{(4)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{1}{4} Z_{21} x \partial_{21}^{(3)} \partial_{32} \partial_{31}^{(2)}(v)+
$$

$$
\frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{31}^{(3)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(6)} \partial_{32}^{(2)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(5)} \partial_{32} \partial_{31}-
$$

$$
\frac{1}{3} z_{32} y \partial_{21}^{(4)} \partial_{31}^{(2)}(v)
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{18} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-\frac{2}{45} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)-\right. \\
& \left.\frac{1}{6} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v)\right) \\
& =\sigma_{1}\left(\frac{1}{18} Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(2)} \partial_{31}^{(2)}(v)\right)+\frac{1}{18} z_{21} x \partial_{31} \partial_{21}^{(2)} \partial_{31}^{(2)}(v)- \\
& \frac{1}{18} z_{32} y \partial_{21}^{(2)} \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-\sigma_{1}\left(\frac{2}{45} z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)} \partial_{32}^{(2)}(v)\right)- \\
& \frac{2}{45} z_{21} x \partial_{31} \partial_{21}^{(4)} \partial_{32}^{(2)}(v)+\frac{2}{45} z_{32} y \partial_{21}^{(2)} \partial_{21}^{(4)} \partial_{32}^{(2)}(v)- \\
& \sigma_{1}\left(\frac{1}{6} Z_{32}^{(2)} y \partial_{21} \partial_{21}^{(5)} \partial_{32}(v)\right)+\frac{1}{6} Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(5)} \partial_{32}(v)+\frac{1}{6} Z_{32} y \partial_{31} \partial_{21}^{(5)} \partial_{32}(v) \\
& =\frac{3}{36} z_{21} x \partial_{21}^{(3)} \partial_{32} \partial_{31}^{(2)}(v)+\frac{6}{18} z_{21} x \partial_{21}^{(2)} \partial_{31}^{(3)}(v)-\frac{6}{18} z_{32} y \partial_{21}^{(4)} \partial_{31}^{(2)}(v)- \\
& \frac{30}{90} z_{21} x \partial_{21}^{(5)} \partial_{32}^{(3)}(v)-\frac{6}{45} z_{21} x \partial_{21}^{(4)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{30}{45} z_{32} y \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{6}{6} Z_{32} y \partial_{21}^{(6)} \partial_{32}^{(2)}(v)-\frac{2}{6} Z_{32} y \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)+\frac{3}{6} z_{21} x \partial_{21}^{(5)} \partial_{32}^{(3)}(v)+ \\
& \frac{2}{6} z_{21} x \partial_{21}^{(4)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{1}{6} z_{21} x \partial_{21}^{(3)} \partial_{32} \partial_{31}^{(2)}(v)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{6} z_{21} x \partial_{21}^{(5)} \partial_{32}^{(3)}(v)+\frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{1}{4} z_{21} x \partial_{21}^{(3)} \partial_{32} \partial_{31}^{(2)}(v)+ \\
& \frac{1}{3} z_{21} x \partial_{21}^{(2)} \partial_{31}^{(3)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(6)} \partial_{32}^{(2)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(5)} \partial_{32} \partial_{31}-\frac{1}{3} z_{32} y \partial_{21}^{(4)} \partial_{31}^{(2)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(7)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{0}$ $=\sigma_{1}\left(Z_{21}^{(7)} x \partial_{32}^{(3)}(v)+Z_{21}^{(6)} x \partial_{32}^{(2)} \partial_{31}(v)+Z_{21}^{(5)} x \partial_{32} \partial_{31}^{(2)}(v)+Z_{21}^{(4)} x \partial_{31}^{(3)}(v)-\right.$ $\left.z_{32}^{(3)} y \partial_{21}^{(7)}(v)\right)$

$$
=\frac{1}{7} z_{21} x \partial_{21}^{(6)} \partial_{32}^{(3)}(v)+\frac{1}{6} Z_{21} x \partial_{21}^{(5)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{32} \partial_{31}^{(2)}(v)+
$$

$$
\frac{1}{4} z_{21} x \partial_{21}^{(3)} \partial_{31}^{(3)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(7)} \partial_{32}^{(2)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(6)} \partial_{32} \partial_{31}-
$$

$$
\frac{1}{3} z_{32} y \partial_{21}^{(5)} \partial_{31}^{(2)}(v)
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{30} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\frac{1}{35} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)-\right. \\
& \left.\frac{2}{15} z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{32}(v)\right) \\
& =\sigma_{1}\left(\frac{1}{30} Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(3)} \partial_{31}^{(2)}(v)\right)+\frac{1}{30} z_{21} x \partial_{31} \partial_{21}^{(3)} \partial_{31}^{(2)}(v)- \\
& \frac{1}{30} z_{32} y \partial_{21}^{(2)} \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\sigma_{1}\left(\frac{1}{35} z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)} \partial_{32}^{(2)}(v)\right)- \\
& \frac{1}{35} Z_{21} x \partial_{31} \partial_{21}^{(5)} \partial_{32}^{(2)}(v)+\frac{1}{35} z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)} \partial_{32}^{(2)}(v)- \\
& \sigma_{1}\left(\frac{2}{15} z_{32}^{(2)} y \partial_{21} \partial_{21}^{(6)} \partial_{32}(v)\right)+\frac{2}{15} z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)} \partial_{32}(v)+ \\
& \frac{2}{15} z_{32} y \partial_{31} \partial_{21}^{(6)} \partial_{32}(v) \\
& =\frac{2}{30} z_{21} x \partial_{21}^{(4)} \partial_{32} \partial_{31}^{(2)}(v)+\frac{15}{60} z_{21} x \partial_{21}^{(3)} \partial_{31}^{(3)}(v)-\frac{10}{30} z_{32} y \partial_{21}^{(5)} \partial_{31}^{(2)}(v)- \\
& \frac{9}{35} z_{21} x \partial_{21}^{(6)} \partial_{32}^{(3)}(v)-\frac{7}{70} z_{21} x \partial_{21}^{(5)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{21}{35} z_{32} y \partial_{21}^{(7)} \partial_{32}^{(2)}(v)- \\
& \frac{14}{15} z_{32} y \partial_{21}^{(7)} \partial_{32}^{(2)}(v)-\frac{10}{30} z_{32} y \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)+\frac{6}{15} z_{21} x \partial_{21}^{(6)} \partial_{32}^{(3)}(v)+ \\
& \frac{4}{15} z_{21} x \partial_{21}^{(5)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{2}{15} z_{21} x \partial_{21}^{(4)} \partial_{32} \partial_{31}^{(2)}(v)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{7} z_{21} x \partial_{21}^{(6)} \partial_{32}^{(3)}(v)+\frac{1}{6} z_{21} x \partial_{21}^{(5)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{32} \partial_{31}^{(2)}(v)+ \\
& \frac{1}{4} z_{21} x \partial_{21}^{(3)} \partial_{31}^{(3)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(7)} \partial_{32}^{(2)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(6)} \partial_{32} \partial_{31}- \\
& \frac{1}{3} z_{32} y \partial_{21}^{(5)} \partial_{31}^{(2)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(8)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{0}$

$$
=Z_{21}^{(8)} x \partial_{32}^{(3)}(v)+\sigma_{1}\left(Z_{21}^{(7)} x \partial_{32}^{(2)} \partial_{31}(v)+Z_{21}^{(6)} x \partial_{32} \partial_{31}^{(2)}(v)+Z_{21}^{(5)} x \partial_{31}^{(3)}(v)-\right.
$$

$$
\left.z_{32}^{(3)} y \partial_{21}^{(8)}(v)\right)
$$

$$
=\frac{1}{7} z_{21} x \partial_{21}^{(6)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{1}{6} z_{21} x \partial_{21}^{(5)} \partial_{32} \partial_{31}^{(2)}(v)+\frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{31}^{(3)}(v)-
$$

$$
\frac{1}{3} z_{32} y \partial_{21}^{(8)} \partial_{32}^{(2)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(7)} \partial_{32} \partial_{31}-\frac{1}{3} z_{32} y \partial_{21}^{(6)} \partial_{31}^{(2)}(v)
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{45} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{5}{252} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)-\right. \\
& \left.\frac{1}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)\right) \\
& =\sigma_{1}\left(\frac{1}{45} Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)} \partial_{31}^{(2)}(v)\right)+\frac{1}{45} Z_{21} x \partial_{31} \partial_{21}^{(4)} \partial_{31}^{(2)}(v)- \\
& \frac{1}{45} z_{32} y \partial_{21}^{(2)} \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\sigma_{1}\left(\frac{5}{252} Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{32}^{(2)}(v)\right)- \\
& \frac{5}{252} Z_{21} x \partial_{31} \partial_{21}^{(6)} \partial_{32}^{(2)}(v)+\frac{5}{252} Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \sigma_{1}\left(\frac{1}{9} z_{32}^{(2)} y \partial_{21} \partial_{21}^{(7)} \partial_{32}(v)\right)+\frac{1}{9} z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)} \partial_{32}(v)+\frac{1}{9} z_{32} y \partial_{31} \partial_{21}^{(7)} \partial_{32}(v) \\
& =\frac{5}{90} Z_{21} x \partial_{21}^{(5)} \partial_{32} \partial_{31}^{(2)}(v)+\frac{9}{45} z_{21} x \partial_{21}^{(4)} \partial_{31}^{(3)}(v)-\frac{15}{45} z_{32} y \partial_{21}^{(6)} \partial_{31}^{(2)}(v)- \\
& \frac{20}{252} Z_{21} x \partial_{21}^{(6)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{140}{252} z_{21} x \partial_{21}^{(8)} \partial_{32}^{(2)}(v)-\frac{8}{9} Z_{32} y \partial_{21}^{(8)} \partial_{32}^{(2)}(v)- \\
& \frac{3}{9} z_{32} y \partial_{21}^{(7)} \partial_{32} \partial_{31}(v)+\frac{2}{9} z_{21} x \partial_{21}^{(6)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{1}{9} z_{21} x \partial_{21}^{(5)} \partial_{32} \partial_{31}^{(2)}(v) \\
& =\frac{1}{7} Z_{21} x \partial_{21}^{(6)} \partial_{32}^{(2)} \partial_{31}(v)+\frac{1}{6} z_{21} x \partial_{21}^{(5)} \partial_{32} \partial_{31}^{(2)}(v)+\frac{1}{5} z_{21} x \partial_{21}^{(4)} \partial_{31}^{(3)}(v)- \\
& \frac{1}{3} z_{32} y \partial_{21}^{(8)} \partial_{32}^{(2)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(7)} \partial_{32} \partial_{31}-\frac{1}{3} z_{32} y \partial_{21}^{(6)} \partial_{31}^{(2)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(9)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0}$

$$
\begin{aligned}
= & z_{21}^{(9)} x \partial_{32}^{(3)}(v)+z_{21}^{(8)} x \partial_{32}^{(2)} \partial_{31}(v)+\sigma_{1}\left(z_{21}^{(7)} x \partial_{32} \partial_{31}^{(2)}(v)+z_{21}^{(6)} x \partial_{31}^{(3)}(v)-\right. \\
& \left.z_{32}^{(3)} y \partial_{21}^{(9)}(v)\right) \\
= & \frac{1}{7} z_{21} x \partial_{21}^{(6)} \partial_{32} \partial_{31}^{(2)}(v)+\frac{1}{6} z_{21} x \partial_{21}^{(5)} \partial_{31}^{(3)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(8)} \partial_{32} \partial_{31}- \\
& \frac{1}{3} z_{32} y \partial_{21}^{(7)} \partial_{31}^{(2)}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} M_{1}}\right)\left(\frac{1}{63} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)+\frac{1}{84} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)\right) \\
& =\sigma_{1}\left(\frac{1}{63} z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)} \partial_{31}^{(2)}(v)\right)+\frac{1}{63} z_{21} x \partial_{31} \partial_{21}^{(5)} \partial_{31}^{(2)}(v)- \\
& \frac{1}{63} z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)} \partial_{31}^{(2)}(v)+\sigma_{1}\left(\frac{1}{84} z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)\right)+ \\
& \frac{1}{84} z_{21} x \partial_{31} \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)-\frac{1}{84} z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{32} \partial_{31}(v) \\
& =\frac{3}{63} z_{21} x \partial_{21}^{(6)} \partial_{32} \partial_{31}^{(2)}(v)+\frac{21}{126} z_{21} x \partial_{21}^{(5)} \partial_{31}^{(3)}(v)-\frac{21}{63} z_{32} y \partial_{21}^{(7)} \partial_{31}^{(2)}(v)+ \\
& \frac{8}{84} z_{21} x \partial_{21}^{(6)} \partial_{32} \partial_{31}^{(2)}(v)-\frac{28}{84} z_{32} y \partial_{21}^{(8)} \partial_{32} \partial_{31}(v) \\
& =\frac{1}{7} z_{21} x \partial_{21}^{(6)} \partial_{32} \partial_{31}^{(2)}(v)+\frac{1}{6} z_{21} x \partial_{21}^{(5)} \partial_{31}^{(3)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(9)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{3} z_{32} y \partial_{21}^{(8)} \partial_{32} \partial_{31}-\frac{1}{3} z_{32} y \partial_{21}^{(7)} \partial_{31}^{(2)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(10)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$

$$
\begin{aligned}
= & Z_{21}^{(10)} x \partial_{32}^{(3)}(v)+Z_{21}^{(9)} x \partial_{32}^{(2)} \partial_{31}(v)+Z_{21}^{(8)} x \partial_{32} \partial_{31}^{(2)}(v)+\sigma_{1}\left(Z_{21}^{(7)} x \partial_{31}^{(3)}(v)\right. \\
& \left.-Z_{32}^{(3)} y \partial_{21}^{(10)}(v)\right) \\
= & \frac{1}{7} z_{21} x \partial_{21}^{(6)} \partial_{31}^{(3)}(v)-\frac{1}{3} Z_{32} y \partial_{21}^{(8)} \partial_{31}^{(2)}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{84} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)\right) \\
& =\sigma_{1}\left(\frac{1}{84} Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{31}^{(2)}(v)\right)+\frac{1}{84} z_{21} x \partial_{31} \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{84} z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{31}^{(2)}(v) \\
= & \frac{1}{56} Z_{21} x \partial_{21} \partial_{21}^{(5)} \partial_{31}^{(3)}(v)+\frac{1}{28} z_{21} x \partial_{21}^{(6)} \partial_{31}^{(3)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(8)} \partial_{31}^{(2)}(v)+ \\
= & \frac{1}{7} z_{21} x \partial_{21}^{(6)} \partial_{31}^{(3)}(v)-\frac{1}{3} z_{32} y \partial_{21}^{(8)} \partial_{31}^{(2)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}\right)\left(Z_{32}^{(2)} y Z_{31} z(v)\right) \quad ;$ where $v \in \mathcal{D}_{9} \otimes \mathcal{D}_{9} \otimes \mathcal{D}_{0}$

$$
\begin{aligned}
& =\sigma_{1}\left(z_{32}^{(3)} y \partial_{21}(v)\right)-Z_{21} x \partial_{32}^{(3)}(v)-\sigma_{1}\left(Z_{32}^{(2)} y \partial_{31}(v)\right) \\
& =\frac{1}{3} z_{32} y \partial_{32}^{(2)} \partial_{21}(v)-Z_{21} x \partial_{32}^{(3)}(v)-\frac{1}{2} z_{32} y \partial_{32} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)\left(\frac{1}{3} z_{32} y z_{31} z \partial_{32}(v)\right) \\
& =\sigma_{1}\left(\frac{1}{3} z_{32}^{(2)} y \partial_{21} \partial_{32}(v)\right)-\frac{1}{3} z_{21} x \partial_{32}^{(2)} \partial_{32}(v)-\frac{1}{3} z_{32} y \partial_{31} \partial_{32}(v) \\
& =\frac{1}{6} z_{32} y \partial_{32} \partial_{21} \partial_{32}(v)-z_{21} x \partial_{32}^{(3)}(v)-\frac{1}{3} z_{32} y \partial_{32} \partial_{31}(v) \\
& =\frac{1}{3} z_{32} y \partial_{32}^{(2)} \partial_{21}(v)-Z_{21} x \partial_{32}^{(3)}(v)-\frac{1}{2} z_{32} y \partial_{32} \partial_{31}(v)
\end{aligned}
$$

Now by employ σ_{2} we can also define

$$
\partial_{3}: \mathcal{L}_{3} \longrightarrow \mathcal{L}_{2} \quad \text { as } \quad \partial_{3}=\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}
$$

Lemma (3.3.3):

The composition $\partial_{2} \partial_{3}$ equal to zero.

Proof:

$$
\begin{aligned}
\partial_{2} \partial_{3}(a)= & \left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}}(a)+\left(\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}}\right)(a)\right) \circ\left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}(a)+\left(\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)(a)\right) \\
= & \left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}} \circ \delta_{\mathcal{L}_{3} \mathcal{L}_{2}}\right)(a)+\left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}} \circ \sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)(a)+ \\
& \left(\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}} \circ \sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)(a)
\end{aligned}
$$

But $\delta_{\mathcal{L}_{2} \mathcal{L}_{1}} \circ \sigma_{2}+\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{1}} \circ \sigma_{2}=\delta_{\mathcal{M}_{2} \mathcal{L}_{1}}+\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}}$ so we get

$$
\begin{aligned}
\partial_{2} \partial_{3}(a)= & \left(\delta_{\mathcal{L}_{2} \mathcal{L}_{1}} \circ \delta_{\mathcal{L}_{3} \mathcal{L}_{2}}\right)(a)+\left(\delta_{\mathcal{M}_{2} \mathcal{L}_{1}} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)(a)+\left(\sigma_{1} \circ \delta_{\mathcal{L}_{2} \mathcal{L}_{1}} \circ \delta_{\mathcal{L}_{3} \mathcal{L}_{2}}\right)(a) \\
& \left(\sigma_{1} \circ \delta_{\mathcal{M}_{2} \mathcal{M}_{1}} \circ \delta_{\mathcal{L}_{2} \mathcal{M}_{2}}\right)(a)
\end{aligned}
$$

By properties of the boundary map δ we get
$\partial_{2} \partial_{3}=0$

We need the definition of a map $\sigma_{3}: \mathcal{M}_{3} \longrightarrow \mathcal{L}_{3}$ such that
$\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}=\left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right) \circ \sigma_{3}$
As follows:

- $Z_{21} x Z_{21} x Z_{21} x(v) \mapsto 0$
- $Z_{21}^{(2)} x z_{21} x z_{21} x(v) \mapsto 0$
- $Z_{21} x Z_{21}^{(2)} x Z_{21} x(v) \mapsto 0$
- $Z_{21} x Z_{21} x z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{21}^{(3)} x Z_{21} x Z_{21} x(v) \mapsto 0$
- $Z_{21} x Z_{21}^{(3)} x Z_{21} x(v) \mapsto 0$
- $Z_{21} x Z_{21} x z_{21}^{(3)} x(v) \mapsto 0$
- $Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21} x(v) \mapsto 0$
- $Z_{21}^{(2)} x Z_{21} x Z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{21} x z_{21}^{(2)} x z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{21}^{(4)} x Z_{21} x Z_{21} x(v) \mapsto 0$
- $Z_{21} x Z_{21}^{(4)} x Z_{21} x(v) \mapsto 0$
- $Z_{21} x Z_{21} x Z_{21}^{(4)} x(v) \mapsto 0$
- $Z_{21}^{(3)} x Z_{21}^{(2)} x Z_{21} x(v) \mapsto 0$
- $z_{21}^{(3)} x z_{21} x z_{21}^{(2)} x(v) \mapsto 0$
- $z_{21}^{(2)} x Z_{21}^{(3)} x Z_{21} x(v) \mapsto 0$
- $Z_{21}^{(2)} x Z_{21} x Z_{21}^{(3)} x(v) \mapsto 0$
; where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$
; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$
- $Z_{21} x Z_{21}^{(2)} x Z_{21}^{(3)} x(v) \mapsto 0$
- $Z_{21} x z_{21}^{(3)} x z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{21}^{(5)} x Z_{21} x Z_{21} x(v) \mapsto 0$
- $Z_{21} x z_{21}^{(5)} x Z_{21} x(v) \mapsto 0$
- $Z_{21} x Z_{21} x Z_{21}^{(5)} x(v) \mapsto 0$
- $z_{21}^{(2)} x Z_{21}^{(2)} x z_{21}^{(3)} x(v) \mapsto 0$
- $Z_{21}^{(2)} x Z_{21}^{(3)} x Z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{21}^{(3)} x Z_{21}^{(2)} x z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{21}^{(3)} x Z_{21}^{(3)} x Z_{21} x(v) \mapsto 0$
- $Z_{21}^{(3)} x z_{21} x z_{21}^{(3)} x(v) \mapsto 0$
- $Z_{21} x z_{21}^{(3)} x Z_{21}^{(3)} x(v) \mapsto 0$
- $Z_{21}^{(2)} x Z_{21}^{(4)} x Z_{21} x(v) \mapsto 0$
- $Z_{21}^{(2)} x Z_{21} x z_{21}^{(4)} x(v) \mapsto 0$
- $Z_{21} x Z_{21}^{(2)} x Z_{21}^{(4)} x(v) \mapsto 0$
- $Z_{21}^{(4)} x Z_{21}^{(2)} x Z_{21} x(v) \mapsto 0$
- $Z_{21}^{(4)} x Z_{21} x Z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{21} x z_{21}^{(4)} x z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{32} y Z_{21}^{(2)} x Z_{21} x(v) \mapsto 0$
- $Z_{32} y z_{21}^{(3)} x z_{21} x(v) \mapsto 0$
- $Z_{32} y Z_{21}^{(2)} x z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{32} y z_{21}^{(4)} x z_{21} x(v) \mapsto 0$
- $Z_{32} y z_{21}^{(2)} x z_{21}^{(3)} x(v) \mapsto 0$
- $Z_{32} y z_{21}^{(3)} x z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{32} y Z_{21}^{(5)} x Z_{21} x(v) \mapsto 0$
; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$; where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{2}$; where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{2}$; where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{2}$; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{2}$; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{2}$; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{2}$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{2}$
- $z_{32} y z_{21}^{(4)} x z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{32} y z_{21}^{(2)} x z_{21}^{(4)} x(v) \mapsto 0$
- $Z_{32} y z_{21}^{(3)} x z_{21}^{(3)} x(v) \mapsto 0$
- $z_{32} y z_{21}^{(6)} x z_{21} x(v) \mapsto 0$
- $Z_{32} y z_{21}^{(5)} x z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{32} y z_{21}^{(2)} x z_{21}^{(5)} x(v) \mapsto 0$
- $Z_{32} y z_{21}^{(4)} x z_{21}^{(3)} x(v) \mapsto 0$
- $Z_{32} y Z_{21}^{(3)} x Z_{21}^{(4)} x(v) \mapsto 0$
- $Z_{32} y z_{21}^{(7)} x z_{21} x(v) \mapsto 0$
- $Z_{32} y z_{21}^{(6)} x z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{32} y z_{21}^{(2)} x z_{21}^{(6)} x(v) \mapsto 0$
- $Z_{32} y Z_{21}^{(5)} x z_{21}^{(3)} x(v) \mapsto 0 \quad ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{2}$
- $Z_{32} y Z_{21}^{(3)} x Z_{21}^{(5)} x(v) \mapsto 0 \quad ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{2}$
- $Z_{32} y Z_{21}^{(4)} x Z_{21}^{(4)} x(v) \mapsto 0 \quad ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{2}$
- $Z_{32} y Z_{32} y Z_{21}^{(3)} x(v) \mapsto-\frac{1}{3} Z_{32} y Z_{31} z Z_{21} x \partial_{21}(v)$; where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{1}$
- $z_{32} y z_{32} y z_{21}^{(4)} x(v) \mapsto-\frac{1}{6} z_{32} y z_{31} z z_{21} x \partial_{21}^{(2)}(v)$; where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{1}$
- $z_{32} y z_{32} y z_{21}^{(5)} x(v) \mapsto-\frac{1}{10} z_{32} y z_{31} z z_{21} x \partial_{21}^{(3)}(v)$; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{1}$
- $Z_{32} y Z_{32} y Z_{21}^{(6)} x(v) \mapsto-\frac{1}{15} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)}(v)$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{1}$
- $Z_{32} y Z_{32} y z_{21}^{(7)} x(v) \mapsto-\frac{1}{21} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)}(v)$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{1}$
- $Z_{32} y Z_{32} y Z_{21}^{(8)} x(v) \mapsto-\frac{1}{28} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)}(v)$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{1}$
- $z_{32} y z_{32} y z_{21}^{(9)} x(v) \mapsto-\frac{1}{36} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(7)}(v)$; where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$
- $z_{32}^{(2)} y z_{21}^{(3)} x z_{21} x(v) \mapsto 0$
- $z_{32}^{(2)} y z_{21}^{(4)} x z_{21} x(v) \mapsto 0$
- $z_{32}^{(2)} y z_{21}^{(3)} x z_{21}^{(2)} x(v) \mapsto 0$
- $z_{32}^{(2)} y z_{21}^{(5)} x z_{21} x(v) \mapsto 0$
- $z_{32}^{(2)} y z_{21}^{(4)} x z_{21}^{(2)} x(v) \mapsto 0$
- $z_{32}^{(2)} y z_{21}^{(3)} x z_{21}^{(3)} x(v) \mapsto 0$
- $z_{32}^{(2)} y z_{21}^{(6)} x z_{21} x(v) \mapsto 0$
- $z_{32}^{(2)} y z_{21}^{(5)} x z_{21}^{(2)} x(v) \mapsto 0$
- $z_{32}^{(2)} y z_{21}^{(4)} x z_{21}^{(3)} x(v) \mapsto 0$
- $Z_{32}^{(2)} y Z_{21}^{(3)} x Z_{21}^{(4)} x(v) \mapsto 0$
- $z_{32}^{(2)} y Z_{21}^{(7)} x z_{21} x(v) \mapsto 0$
- $z_{32}^{(2)} y z_{21}^{(6)} x z_{21}^{(2)} x(v) \mapsto 0$
- $z_{32}^{(2)} y z_{21}^{(5)} x z_{21}^{(3)} x(v) \mapsto 0$
- $z_{32}^{(2)} y z_{21}^{(4)} x z_{21}^{(4)} x(v) \mapsto 0$
- $Z_{32}^{(2)} y Z_{21}^{(3)} x z_{21}^{(5)} x(v) \mapsto 0$
- $z_{32}^{(2)} y z_{21}^{(8)} x z_{21} x(v) \mapsto 0$
- $z_{32}^{(2)} y z_{21}^{(7)} x z_{21}^{(2)} x(v) \mapsto 0$
- $Z_{32}^{(2)} y Z_{21}^{(6)} x z_{21}^{(3)} x(v) \mapsto 0$
- $Z_{32}^{(2)} y Z_{21}^{(5)} x Z_{21}^{(4)} x(v) \mapsto 0$
- $Z_{32}^{(2)} y Z_{21}^{(4)} x Z_{21}^{(5)} x(v) \mapsto 0$
- $Z_{32}^{(2)} y Z_{21}^{(3)} x z_{21}^{(6)} x(v) \mapsto 0$
; where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{1}$
; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{1}$
; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$; where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$
- $Z_{32} y Z_{32} y \mathcal{Z}_{32} \mathcal{y}(v) \mapsto 0 \quad ;$ where $v \in \mathcal{D}_{8} \otimes \mathcal{D}_{10} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(2)} y Z_{32} y Z_{21}^{(4)} x(v) \mapsto \frac{1}{6} Z_{32} y Z_{31} z Z_{21} x \partial_{21} \partial_{31}(v)-$ $\frac{1}{4} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(2)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(2)} y z_{32} y z_{21}^{(5)} x(v) \mapsto \frac{1}{12} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(2)} \partial_{31}(v)-$ $\frac{7}{60} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(3)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(2)} y Z_{32} y Z_{21}^{(6)} x(v) \mapsto \frac{1}{20} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(3)} \partial_{31}(v)-$ $\frac{1}{15} Z_{32} y \mathcal{Z}_{31} z \mathcal{Z}_{21} x \partial_{21}^{(4)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(2)} y Z_{32} y z_{21}^{(7)} x(v) \mapsto \frac{1}{30} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{31}(v)-$ $\frac{3}{70} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(2)} y Z_{32} y Z_{21}^{(8)} x(v) \mapsto \frac{1}{42} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{31}(v)-$ $\frac{5}{168} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(2)} y z_{32} y z_{21}^{(9)} x(v) \mapsto \frac{1}{56} z_{32} y z_{31} z z_{21} x \partial_{21}^{(6)} \partial_{31}(v)+$ $\frac{1}{72} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(2)} y Z_{32} y Z_{21}^{(10)} x(v) \mapsto \frac{1}{72} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{31}(v)$; where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$
- $Z_{32} y Z_{32}^{(2)} y z_{21}^{(4)} x(v) \mapsto-\frac{1}{3} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(2)} \partial_{32}(v)$; where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{0}$
- $Z_{32} y Z_{32}^{(2)} y Z_{21}^{(5)} x(v) \mapsto-\frac{1}{6} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(3)} \partial_{32}(v)$; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{0}$
- $Z_{32} y Z_{32}^{(2)} y Z_{21}^{(6)} x(v) \mapsto-\frac{1}{10} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{32}(v)$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{0}$
- $Z_{32} y z_{32}^{(2)} y z_{21}^{(7)} x(v) \mapsto-\frac{1}{15} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{32}(v)$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{0}$
- $Z_{32} y Z_{32}^{(2)} y Z_{21}^{(8)} x(v) \mapsto-\frac{1}{21} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{32}(v)$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{0}$
- $Z_{32} y z_{32}^{(2)} y z_{21}^{(9)} x(v) \mapsto 0 \quad ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0}$
- $Z_{32} y z_{32}^{(2)} y z_{21}^{(10)} x(v) \mapsto 0 \quad ;$ where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$
- $z_{32}^{(3)} y z_{21}^{(4)} x z_{21} x(v) \mapsto-\frac{1}{9} z_{32} y z_{31} z z_{21} x \partial_{21}^{(2)} \partial_{31}(v)-$ $\frac{1}{18} \mathcal{Z}_{32} y Z_{31} z Z_{21} x \partial_{21}^{(3)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y z_{21}^{(5)} x z_{21} x(v) \mapsto-\frac{1}{18} z_{32} y z_{31} z z_{21} x \partial_{21}^{(3)} \partial_{31}(v)-$ $\frac{1}{45} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y z_{21}^{(4)} x z_{21}^{(2)} x(v) \mapsto-\frac{1}{3} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(3)} \partial_{31}(v)-$ $\frac{1}{6} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{0}$
- $z_{32}^{(3)} y z_{21}^{(6)} x z_{21} x(v) \mapsto-\frac{1}{30} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{31}(v)-$ $\frac{1}{90} \mathcal{Z}_{32} y \mathcal{Z}_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y z_{21}^{(5)} x z_{21}^{(2)} x(v) \mapsto-\frac{2}{9} Z_{32} y z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{31}(v)-$ $\frac{4}{45} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y Z_{21}^{(4)} x Z_{21}^{(3)} x(v) \mapsto-\frac{2}{3} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{31}(v)-$ $\frac{1}{3} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{0}$
- $z_{32}^{(3)} y z_{21}^{(7)} x z_{21} x(v) \mapsto-\frac{1}{45} z_{32} y z_{31} z z_{21} x \partial_{21}^{(5)} \partial_{31}(v)-$ $\frac{2}{315} Z_{32} y \mathcal{Z}_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y Z_{21}^{(6)} x Z_{21}^{(2)} x(v) \mapsto-\frac{1}{6} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{31}(v)-$

$$
\begin{array}{ll}
\frac{1}{18} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{32}(v) & \text {; where } v \in \mathcal{D}_{16} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{0} \\
\cdot Z_{32}^{(3)} y z_{21}^{(5)} x z_{21}^{(3)} x(v) \mapsto-\frac{5}{9} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{31}(v)- \\
\frac{2}{9} Z_{32} y z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{32}(v) & ; \text { where } v \in \mathcal{D}_{16} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{0}
\end{array}
$$

- $Z_{32}^{(3)} y Z_{21}^{(4)} x Z_{21}^{(4)} x(v) \mapsto-\frac{10}{9} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{31}(v)-$ $\frac{5}{9} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y Z_{21}^{(8)} x Z_{21} x(v) \mapsto-\frac{1}{63} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{31}(v)-$ $\frac{1}{9} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y z_{21}^{(7)} x Z_{21}^{(2)} x(v) \mapsto-\frac{2}{15} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{31}(v)-$ $\frac{7}{15} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0}$
- $z_{32}^{(3)} y z_{21}^{(6)} x z_{21}^{(3)} x(v) \mapsto-\frac{1}{2} z_{32} y z_{31} z z_{21} x \partial_{21}^{(6)} \partial_{31}(v)-$ $\frac{7}{6} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y Z_{21}^{(5)} x Z_{21}^{(4)} x(v) \mapsto-\frac{10}{9} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{31}(v)-$ $\frac{35}{18} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y Z_{21}^{(4)} x Z_{21}^{(5)} x(v) \mapsto-\frac{5}{3} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{31}(v)-$ $\frac{7}{3} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y Z_{21}^{(9)} x Z_{21} x(v) \mapsto 0 \quad ;$ where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y Z_{21}^{(8)} x Z_{21}^{(2)} x(v) \mapsto-\frac{1}{9} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{31}(v)$; where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y Z_{21}^{(7)} x Z_{21}^{(3)} x(v) \mapsto-\frac{7}{15} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{31}(v)$; where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y Z_{21}^{(6)} x Z_{21}^{(4)} x(v) \mapsto-\frac{7}{6} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{31}(v)$; where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y Z_{21}^{(5)} x Z_{21}^{(5)} x(v) \mapsto-\frac{35}{18} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{31}(v)$; where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(3)} y z_{21}^{(4)} x z_{21}^{(6)} x(v) \mapsto-\frac{7}{3} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{31}(v)$; where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$
- $Z_{32} y Z_{31} z Z_{21}^{(2)} x(v) \mapsto \frac{1}{3} Z_{32} y Z_{31} z Z_{21} x \partial_{21}(v)$; where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{1}$
- $Z_{32} y z_{31} z Z_{21}^{(3)} x(v) \mapsto \frac{1}{6} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(2)}(v)$; where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{1}$
- $Z_{32} y Z_{31} z Z_{21}^{(4)} x(v) \mapsto \frac{1}{10} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(3)}(v) ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{1}$
- $Z_{32} y Z_{31} z Z_{21}^{(5)} x(v) \mapsto \frac{1}{15} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)}(v) ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{1}$
- $Z_{32} y Z_{31} z Z_{21}^{(6)} x(v) \mapsto \frac{1}{21} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)}(v) ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{1}$
- $Z_{32} y Z_{31} z Z_{21}^{(7)} x(v) \mapsto \frac{1}{28} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)}(v) ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{1}$
- $Z_{32} y Z_{31} z Z_{21}^{(8)} x(v) \mapsto \frac{1}{36} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)}(v) ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$
- $Z_{32} y Z_{32} y Z_{31} z(v) \mapsto 0 \quad ;$ where $v \in \mathcal{D}_{9} \otimes \mathcal{D}_{9} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(2)} y Z_{31} z Z_{21}^{(2)} x(v) \mapsto \frac{1}{3} Z_{32} y Z_{31} z Z_{21} x \partial_{31}(v)$; where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{7} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(2)} y Z_{31} z Z_{21}^{(3)} x(v) \mapsto \frac{1}{6} z_{32} y Z_{31} z Z_{21} x \partial_{21} \partial_{31}(v)-$ $\frac{1}{12} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(2)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(2)} y Z_{31} z Z_{21}^{(4)} x(v) \mapsto \frac{1}{9} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(2)} \partial_{31}(v)-$ $\frac{7}{90} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(3)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(2)} y Z_{31} z Z_{21}^{(5)} x(v) \mapsto \frac{1}{12} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(3)} \partial_{31}(v)-$

$$
\frac{1}{15} z_{32} y z_{31} z z_{21} x \partial_{21}^{(4)} \partial_{32}(v) \quad ; \text { where } v \in \mathcal{D}_{14} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{0}
$$

- $Z_{32}^{(2)} y Z_{31} z Z_{21}^{(6)} x(v) \mapsto \frac{1}{15} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{31}(v)-$ $\frac{2}{35} Z_{32} y Z_{31} z \mathcal{Z}_{21} x \partial_{21}^{(5)} \partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{0}$
- $Z_{32}^{(2)} y Z_{31} z Z_{21}^{(7)} x(v) \mapsto \frac{1}{18} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{31}(v)-$

$$
\frac{25}{504} z_{32} y z_{31} z z_{21} x \partial_{21}^{(6)} \partial_{32}(v) \quad ; \text { where } v \in \mathcal{D}_{16} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{0}
$$

- $Z_{32}^{(2)} y Z_{31} z Z_{21}^{(8)} x(v) \mapsto \frac{1}{21} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{31}(v)+$

$$
\frac{1}{36} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{32}(v) \quad ; \text { where } v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0}
$$

- $Z_{32}^{(2)} y z_{31} z Z_{21}^{(9)} x(v) \mapsto \frac{1}{24} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{31}(v)$; where
$v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$

Proposition (3.3.4):

The map σ_{3} defined above satisfies (3.3.3).

Proof:

We can see that

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21} x Z_{21} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{3}$

$$
\begin{aligned}
& =\sigma_{2}\left(2 Z_{21}^{(2)} x z_{21} x(v)-2 z_{21} x z_{21}^{(2)} x(v)+z_{21} x z_{21} x \partial_{21}(v)\right) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(2)} x Z_{21} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{3}$

$$
=\sigma_{2}\left(3 Z_{21}^{(3)} x Z_{21} x(v)-2 Z_{21}^{(2)} x Z_{21}^{(2)} x(v)+Z_{21}^{(2)} x Z_{21} x \partial_{21}(v)\right)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21} x Z_{21}^{(2)} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{3}$

$$
=\sigma_{2}\left(3 Z_{21}^{(3)} x Z_{21} x(v)-3 Z_{21} x Z_{21}^{(3)} x(v)+Z_{21} x Z_{21}^{(2)} x \partial_{21}(v)\right)=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21} x Z_{21} x Z_{21}^{(2)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{3}$

$$
=\sigma_{2}\left(2 z_{21}^{(2)} x z_{21}^{(2)} x(v)-3 z_{21} x z_{21}^{(3)} x(v)+z_{21} x z_{21} x \partial_{21}^{(2)}(v)\right)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(3)} x Z_{21} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$

$$
=\sigma_{2}\left(4 Z_{21}^{(4)} x Z_{21} x(v)-2 Z_{21}^{(3)} x Z_{21}^{(2)} x(v)+Z_{21}^{(3)} x Z_{21} x \partial_{21}(v)\right)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21} x Z_{21}^{(3)} x \mathcal{Z}_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$
$=\sigma_{2}\left(4 Z_{21}^{(4)} x Z_{21} x(v)-4 Z_{21} x Z_{21}^{(4)} x(v)+Z_{21} x Z_{21}^{(3)} x \partial_{21}(v)\right)$
$=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{21} x Z_{21} x Z_{21}^{(3)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$

$$
\begin{aligned}
& =\sigma_{2}\left(2 z_{21}^{(2)} x z_{21}^{(3)} x(v)-4 z_{21} x z_{21}^{(4)} x(v)+z_{21} x z_{21} x \partial_{21}^{(3)}(v)\right) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$

$$
\begin{aligned}
& =\sigma_{2}\left(6 Z_{21}^{(4)} x Z_{21} x(v)-3 Z_{21}^{(2)} x Z_{21}^{(3)} x(v)+Z_{21}^{(2)} x Z_{21}^{(2)} x \partial_{21}(v)\right) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(2)} x Z_{21} x Z_{21}^{(2)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$

$$
=\sigma_{2}\left(3 z_{21}^{(3)} x z_{21}^{(2)} x(v)-3 Z_{21}^{(2)} x z_{21}^{(3)} x(v)+Z_{21}^{(2)} x z_{21} x \partial_{21}^{(2)}(v)\right)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21} x \mathcal{Z}_{21}^{(2)} x \mathcal{Z}_{21}^{(2)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{3}$ $=\sigma_{2}\left(3 Z_{21}^{(3)} x Z_{21} x(v)-6 Z_{21} x Z_{21}^{(4)} x(v)+Z_{21} x Z_{21}^{(2)} x \partial_{21}^{(2)}(v)\right)$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(4)} x Z_{21} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$ $=\sigma_{2}\left(5 Z_{21}^{(5)} x z_{21} x(v)-2 Z_{21}^{(4)} x z_{21}^{(2)} x(v)+Z_{21}^{(4)} x z_{21} x \partial_{21}(v)\right)$ $=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21} x \mathcal{Z}_{21}^{(4)} x Z_{21} x(v)\right)$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$
$=\sigma_{2}\left(5 Z_{21}^{(5)} x Z_{21} x(v)-5 Z_{21}^{(5)} x Z_{21} x(v)+Z_{21} x Z_{21}^{(4)} x \partial_{21}(v)\right)$
$=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(\mathcal{Z}_{21} x Z_{21} x Z_{21}^{(4)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$
$=\sigma_{2}\left(2 Z_{21}^{(2)} x z_{21}^{(4)} x(v)-5 Z_{21} x z_{21}^{(5)} x(v)+Z_{21} x Z_{21} x \partial_{21}^{(4)}(v)\right)$
$=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(3)} x Z_{21}^{(2)} x Z_{21} x(v)\right) ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$

$$
\begin{aligned}
& =\sigma_{2}\left(10 Z_{21}^{(5)} x Z_{21} x(v)-3 Z_{21}^{(3)} x Z_{21}^{(3)} x(v)+Z_{21}^{(3)} x Z_{21}^{(2)} x \partial_{21}(v)\right) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(3)} x Z_{21} x Z_{21}^{(2)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$

$$
=\sigma_{2}\left(4 Z_{21}^{(4)} x Z_{21}^{(2)} x(v)-3 Z_{21}^{(3)} x Z_{21}^{(3)} x(v)+Z_{21}^{(3)} x Z_{21} x \partial_{21}^{(2)}(v)\right)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(2)} x Z_{21}^{(3)} x Z_{21} x(v)\right)$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$

$$
\begin{aligned}
& =\sigma_{2}\left(10 Z_{21}^{(5)} x Z_{21} x(v)-4 Z_{21}^{(2)} x z_{21}^{(4)} x(v)+Z_{21}^{(2)} x Z_{21}^{(3)} x \partial_{21}(v)\right) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(2)} x Z_{21} x Z_{21}^{(3)} x(v)\right)$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$

$$
=\sigma_{2}\left(3 Z_{21}^{(3)} x Z_{21}^{(3)} x(v)-4 Z_{21}^{(2)} x Z_{21}^{(4)} x(v)+Z_{21}^{(2)} x Z_{21} x \partial_{21}^{(3)}(v)\right)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21} x Z_{21}^{(2)} x \mathcal{Z}_{21}^{(3)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$ $=\sigma_{2}\left(3 Z_{21}^{(3)} x Z_{21}^{(3)} x(v)-10 Z_{21} x Z_{21}^{(5)} x(v)+Z_{21} x Z_{21}^{(2)} x \partial_{21}^{(3)}(v)\right)$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21} x Z_{21}^{(3)} x Z_{21}^{(2)} x(v)\right) ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$

$$
=\sigma_{2}\left(4 Z_{21}^{(4)} x Z_{21}^{(2)} x(v)-10 Z_{21} x z_{21}^{(5)} x(v)+Z_{21} x Z_{21}^{(3)} x \partial_{21}^{(2)}(v)\right)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(2)} x \mathcal{Z}_{21}^{(2)} x \mathcal{Z}_{21}^{(2)} x(v)\right)$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{3}$
$=\sigma_{2}\left(6 Z_{21}^{(4)} x Z_{21}^{(2)} x(v)-6 Z_{21}^{(2)} x Z_{21}^{(4)} x(v)+Z_{21}^{(2)} x Z_{21}^{(2)} x \partial_{21}^{(2)}(v)\right)$
$=0$
$\bullet\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(5)} x Z_{21} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$

$$
\begin{aligned}
& =\sigma_{2}\left(6 Z_{21}^{(6)} x Z_{21} x(v)-2 Z_{21}^{(5)} x Z_{21}^{(2)} x(v)+Z_{21}^{(5)} x Z_{21} x \partial_{21}(v)\right) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(\mathcal{Z}_{21} x \mathcal{Z}_{21}^{(5)} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$

$$
\begin{aligned}
& =\sigma_{2}\left(6 Z_{21}^{(6)} x Z_{21} x(v)-6 Z_{21} x Z_{21}^{(6)} x(v)+Z_{21} x Z_{21}^{(5)} x \partial_{21}(v)\right) \\
& =0
\end{aligned}
$$

$\cdot\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21} x Z_{21} x Z_{21}^{(5)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$

$$
\begin{aligned}
& =\sigma_{2}\left(2 Z_{21}^{(2)} x Z_{21}^{(5)} x(v)-6 Z_{21} x Z_{21}^{(6)} x(v)+Z_{21} x Z_{21} x \partial_{21}^{(5)}(v)\right) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21}^{(3)} x(v)\right) ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$

$$
\begin{aligned}
& =\sigma_{2}\left(6 Z_{21}^{(4)} x Z_{21}^{(3)} x(v)-10 Z_{21}^{(2)} x Z_{21}^{(5)} x(v)+Z_{21}^{(2)} x Z_{21}^{(2)} x \partial_{21}^{(3)}(v)\right) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(2)} x Z_{21}^{(3)} x Z_{21}^{(2)} x(v)\right) ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$

$$
=\sigma_{2}\left(10 Z_{21}^{(5)} x Z_{21}^{(2)} x(v)-10 Z_{21}^{(2)} x Z_{21}^{(5)} x(v)+Z_{21}^{(2)} x Z_{21}^{(3)} x \partial_{21}^{(2)}(v)\right)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(3)} x Z_{21}^{(2)} x Z_{21}^{(2)} x(v)\right)$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$ $=\sigma_{2}\left(10 Z_{21}^{(5)} x Z_{21}^{(2)} x(v)-6 Z_{21}^{(3)} x Z_{21}^{(4)} x(v)+Z_{21}^{(3)} x Z_{21}^{(2)} x \partial_{21}^{(2)}(v)\right)$ $=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(3)} x Z_{21}^{(3)} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$
$=\sigma_{2}\left(20 Z_{21}^{(6)} x Z_{21} x(v)-4 Z_{21}^{(3)} x Z_{21}^{(4)} x(v)+Z_{21}^{(3)} x Z_{21}^{(3)} x \partial_{21}(v)\right)$
$=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(3)} x Z_{21} x z_{21}^{(3)} x(v)\right) ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$

$$
=\sigma_{2}\left(4 Z_{21}^{(4)} x Z_{21}^{(3)} x(v)-4 Z_{21}^{(3)} x Z_{21}^{(4)} x(v)+Z_{21}^{(3)} x Z_{21} x \partial_{21}^{(3)}(v)\right)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{21} x Z_{21}^{(3)} x Z_{21}^{(3)} x(v)\right) ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$

$$
\begin{aligned}
& =\sigma_{2}\left(4 Z_{21}^{(4)} x z_{21}^{(3)} x(v)-20 z_{21} x z_{21}^{(6)} x(v)+z_{21} x z_{21}^{(3)} x \partial_{21}^{(3)}(v)\right) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(2)} x Z_{21}^{(4)} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$

$$
\begin{aligned}
& =\sigma_{2}\left(15 z_{21}^{(6)} x z_{21} x(v)-5 z_{21}^{(2)} x z_{21}^{(5)} x(v)+z_{21}^{(2)} x z_{21}^{(4)} x \partial_{21}(v)\right) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{21}^{(2)} x z_{21} x z_{21}^{(4)} x(v)\right) ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$

$$
\begin{aligned}
& =\sigma_{2}\left(3 z_{21}^{(3)} x z_{21}^{(4)} x(v)-5 z_{21}^{(2)} x z_{21}^{(5)} x(v)+z_{21}^{(2)} x z_{21} x \partial_{21}^{(4)}(v)\right) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(4)} x Z_{21}^{(2)} x Z_{21} x(v)\right) ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$

$$
=\sigma_{2}\left(15 z_{21}^{(6)} x z_{21} x(v)-3 Z_{21}^{(4)} x z_{21}^{(3)} x(v)+Z_{21}^{(4)} x Z_{21}^{(2)} x \partial_{21}(v)\right)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21}^{(4)} x Z_{21} x Z_{21}^{(2)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$ $=\sigma_{2}\left(5 Z_{21}^{(5)} x Z_{21}^{(2)} x(v)-3 Z_{21}^{(4)} x Z_{21}^{(3)} x(v)+Z_{21}^{(4)} x z_{21} x \partial_{21}^{(2)}(v)\right)$ $=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21} x Z_{21}^{(4)} x Z_{21}^{(2)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3}$
$=\sigma_{2}\left(5 Z_{21}^{(5)} x Z_{21}^{(2)} x(v)-15 Z_{21} x Z_{21}^{(6)} x(v)+Z_{21} x Z_{21}^{(4)} x \partial_{21}^{(2)}(v)\right)$
$=0$

$$
\begin{aligned}
\bullet & \left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{21} x Z_{21}^{(2)} x Z_{21}^{(4)} x(v)\right) \quad ; \text { where } v \in \mathcal{D}_{15} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{3} \\
= & \sigma_{2}\left(3 Z_{21}^{(3)} x Z_{21}^{(4)} x(v)-15 Z_{21} x Z_{21}^{(6)} x(v)+Z_{21} x Z_{21}^{(2)} x \partial_{21}^{(4)}(v)\right) \\
= & 0 \\
\bullet & \left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y Z_{21}^{(2)} x Z_{21} x(v)\right) ; \text { where } v \in \mathcal{D}_{11} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{2} \\
= & \sigma_{2}\left(Z_{21}^{(2)} x Z_{21} x \partial_{32}(v)+Z_{21} x Z_{21} x \partial_{31}(v)-3 Z_{32} y Z_{21}^{(3)} x(v)\right)+ \\
& Z_{32} y Z_{21}^{(2)} x \partial_{21}(v) \\
= & -\frac{3}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}(v)+Z_{32} y Z_{21}^{(2)} x \partial_{21}(v) \\
= & 0
\end{aligned}
$$

$\bullet\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y Z_{21}^{(3)} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{2}$

$$
=\sigma_{2}\left(Z_{21}^{(3)} x Z_{21} x \partial_{32}(v)+Z_{21}^{(2)} x Z_{21} x \partial_{31}(v)-4 Z_{32} y Z_{21}^{(4)} x(v)+\right.
$$

$$
\left.z_{32} y z_{21}^{(3)} x \partial_{21}(v)\right)
$$

$$
=-\frac{4}{6} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)}(v)+\frac{2}{3} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)}(v)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y Z_{21}^{(2)} x Z_{21}^{(2)} x(v)\right) ;$ where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{2}$
$=\sigma_{2}\left(Z_{21}^{(2)} x Z_{21}^{(2)} x \partial_{32}(v)+Z_{21} x Z_{21}^{(2)} x \partial_{31}(v)-3 Z_{32} y Z_{21}^{(3)} x(v)\right)+$

$$
\begin{aligned}
& z_{32} y Z_{21}^{(2)} x \partial_{21}(v) \\
= & -\frac{3}{3} z_{32} y z_{21}^{(2)} x \partial_{21}(v)+z_{32} y z_{21}^{(2)} x \partial_{21}(v) \\
= & 0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} \mathcal{y} Z_{21}^{(4)} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{2}$

$$
=\sigma_{2}\left(Z_{21}^{(4)} x Z_{21} x \partial_{32}(v)+Z_{21}^{(3)} x Z_{21} x \partial_{31}(v)-5 Z_{32} y Z_{21}^{(5)} x(v)+\right.
$$

$$
\left.Z_{32} y Z_{21}^{(4)} x \partial_{21}(v)\right)
$$

$$
\begin{aligned}
& =-\frac{5}{10} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)}(v)+\frac{3}{6} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)}(v) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} \mathcal{y} Z_{21}^{(2)} x Z_{21}^{(3)} x(v)\right) ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{2}$ $=\sigma_{2}\left(Z_{21}^{(2)} x Z_{21}^{(3)} x \partial_{32}(v)+Z_{21} x Z_{21}^{(3)} x \partial_{31}(v)-10 Z_{32} y Z_{21}^{(5)} x(v)\right)+$ $z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)}(v)$
$=-\frac{10}{10} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)}(v)+Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)}(v)$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(\mathcal{Z}_{32} \mathcal{y} Z_{21}^{(3)} x Z_{21}^{(2)} x(v)\right) ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{2}$

$$
=\sigma_{2}\left(Z_{21}^{(3)} x Z_{21}^{(2)} x \partial_{32}(v)+Z_{21}^{(2)} x Z_{21}^{(2)} x \partial_{31}(v)-10 Z_{32} y Z_{21}^{(5)} x(v)+\right.
$$

$$
\left.Z_{32} y Z_{21}^{(3)} x \partial_{21}^{(2)}(v)\right)
$$

$$
=-\frac{10}{10} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)}(v)+\frac{3}{3} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)}(v)
$$

$$
=0
$$

$\bullet\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y Z_{21}^{(5)} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{2}$

$$
=\sigma_{2}\left(Z_{21}^{(5)} x Z_{21} x \partial_{32}(v)+Z_{21}^{(4)} x Z_{21} x \partial_{31}(v)-6 Z_{32} y z_{21}^{(6)} x(v)+\right.
$$

$$
\left.Z_{32} y Z_{21}^{(5)} x \partial_{21}(v)\right)
$$

$$
=-\frac{6}{15} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)}(v)+\frac{4}{10} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)}(v)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} \mathcal{y} Z_{21}^{(4)} x Z_{21}^{(2)} x(v)\right) ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{2}$ $=\sigma_{2}\left(Z_{21}^{(4)} x Z_{21}^{(2)} x \partial_{32}(v)+Z_{21}^{(3)} x Z_{21}^{(2)} x \partial_{31}(v)-15 Z_{32} y Z_{21}^{(6)} x(v)+\right.$ $\left.z_{32} y Z_{21}^{(4)} x \partial_{21}^{(2)}(v)\right)$ $=-\frac{15}{15} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)}(v)+\frac{6}{6} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)}(v)=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32} y \mathcal{Z}_{21}^{(2)} x Z_{21}^{(4)} x(v)\right)$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{2}$

$$
\begin{aligned}
= & \sigma_{2}\left(z_{21}^{(2)} x z_{21}^{(4)} x \partial_{32}(v)+z_{21} x z_{21}^{(4)} x \partial_{31}(v)-15 z_{32} y z_{21}^{(6)} x(v)\right)+ \\
& z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)}(v) \\
= & -\frac{15}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)}(v)+z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)}(v) \\
= & 0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y Z_{21}^{(3)} x Z_{21}^{(3)} x(v)\right)$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{2}$ $=\sigma_{2}\left(Z_{21}^{(3)} x Z_{21}^{(3)} x \partial_{32}(v)+Z_{21}^{(2)} x Z_{21}^{(3)} x \partial_{31}(v)-20 Z_{32} y Z_{21}^{(6)} x(v)+\right.$ $\left.z_{32} y Z_{21}^{(3)} x \partial_{21}^{(3)}(v)\right)$

$$
\begin{aligned}
& =-\frac{20}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)}(v)+\frac{4}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)}(v) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32} y z_{21}^{(6)} x z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{2}$

$$
=\sigma_{2}\left(z_{21}^{(6)} x z_{21} x \partial_{32}(v)+z_{21}^{(5)} x z_{21} x \partial_{31}(v)-7 z_{32} y z_{21}^{(7)} x(v)+\right.
$$

$$
\left.z_{32} y z_{21}^{(6)} x \partial_{21}(v)\right)
$$

$$
=-\frac{7}{21} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)}(v)+\frac{5}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)}(v)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y \mathcal{Z}_{21}^{(5)} x Z_{21}^{(2)} x(v)\right)$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{2}$
$=\sigma_{2}\left(z_{21}^{(5)} x z_{21}^{(2)} x \partial_{32}(v)+z_{21}^{(4)} x z_{21}^{(2)} x \partial_{31}(v)-21 Z_{32} y z_{21}^{(7)} x(v)+\right.$ $\left.z_{32} y z_{21}^{(5)} x \partial_{21}^{(2)}(v)\right)$
$=-\frac{21}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)}(v)+\frac{10}{10} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)}(v)$
$=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32} y \mathcal{Z}_{21}^{(2)} x Z_{21}^{(5)} x(v)\right)$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{2}$

$$
\begin{aligned}
= & \sigma_{2}\left(z_{21}^{(2)} x z_{21}^{(5)} x \partial_{32}(v)+z_{21} x z_{21}^{(5)} x \partial_{31}(v)-21 z_{32} y z_{21}^{(7)} x(v)\right)+ \\
& z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)}(v) \\
= & -\frac{21}{21} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)}(v)+z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)}(v) \\
= & 0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(\mathcal{Z}_{32} y \mathcal{Z}_{21}^{(4)} x \mathcal{Z}_{21}^{(3)} x(v)\right)$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{2}$ $=\sigma_{2}\left(Z_{21}^{(4)} x Z_{21}^{(3)} x \partial_{32}(v)+Z_{21}^{(3)} x Z_{21}^{(3)} x \partial_{31}(v)-35 Z_{32} y Z_{21}^{(7)} x(v)+\right.$

$$
\left.z_{32} y z_{21}^{(4)} x \partial_{21}^{(3)}(v)\right)
$$

$$
=-\frac{35}{21} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)}(v)+\frac{10}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)}(v)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32} y z_{21}^{(3)} x z_{21}^{(4)} x(v)\right)$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{2}$
$=\sigma_{2}\left(Z_{21}^{(3)} x Z_{21}^{(4)} x \partial_{32}(v)+Z_{21}^{(2)} x Z_{21}^{(4)} x \partial_{31}(v)-35 Z_{32} y Z_{21}^{(7)} x(v)+\right.$ $\left.z_{32} y Z_{21}^{(3)} x \partial_{21}^{(4)}(v)\right)$
$=-\frac{35}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)}(v)+\frac{5}{3} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)}(v)$
$=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(\mathcal{Z}_{32} y \mathcal{Z}_{21}^{(7)} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{2}$
$=Z_{21}^{(7)} x Z_{21} x \partial_{32}(v)+\sigma_{2}\left(Z_{21}^{(6)} x Z_{21} x \partial_{31}(v)-8 Z_{32} y Z_{21}^{(8)} x(v)+\right.$ $\left.z_{32} y z_{21}^{(7)} x \partial_{21}(v)\right)$
$=-\frac{8}{28} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)}(v)+\frac{6}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)}(v)$
$=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32} y \mathcal{Z}_{21}^{(6)} x z_{21}^{(2)} x(v)\right)$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{2}$

$$
\begin{aligned}
& =z_{21}^{(6)} x z_{21}^{(2)} x \partial_{32}(v)+\sigma_{2}\left(z_{21}^{(5)} x z_{21}^{(2)} x \partial_{31}(v)-28 z_{32} y z_{21}^{(8)} x(v)+\right. \\
& \left.z_{32} y z_{21}^{(6)} x \partial_{21}^{(2)}(v)\right) \\
& =-\frac{28}{28} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)}(v)+\frac{15}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)}(v) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(\mathcal{Z}_{32} y \mathcal{Z}_{21}^{(2)} x Z_{21}^{(6)} x(v)\right)$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{2}$

$$
=Z_{21}^{(2)} x Z_{21}^{(6)} x \partial_{32}(v)+\sigma_{2}\left(Z_{21} x z_{21}^{(6)} x \partial_{31}(v)-28 Z_{32} y z_{21}^{(8)} x(v)\right)+
$$

$$
z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)}(v)
$$

$$
=-\frac{28}{28} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)}(v)+Z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)}(v)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32} y z_{21}^{(5)} x z_{21}^{(3)} x(v)\right)$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{2}$

$$
\begin{aligned}
= & z_{21}^{(5)} x z_{21}^{(3)} x \partial_{32}(v)+\sigma_{2}\left(z_{21}^{(4)} x z_{21}^{(3)} x \partial_{31}(v)-56 z_{32} y z_{21}^{(8)} x(v)+\right. \\
& \left.z_{32} y z_{21}^{(5)} x \partial_{21}^{(3)}(v)\right) \\
= & -\frac{56}{28} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)}(v)+\frac{20}{10} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)}(v) \\
= & 0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y Z_{21}^{(3)} x Z_{21}^{(5)} x(v)\right)$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{2}$

$$
=z_{21}^{(3)} x z_{21}^{(5)} x \partial_{32}(v)+\sigma_{2}\left(Z_{21}^{(2)} x z_{21}^{(5)} x \partial_{31}(v)-56 z_{32} y z_{21}^{(8)} x(v)+\right.
$$

$$
\left.z_{32} y z_{21}^{(3)} x \partial_{21}^{(5)}(v)\right)
$$

$$
=-\frac{56}{28} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)}(v)+\frac{6}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)}(v)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32} y \mathcal{Z}_{21}^{(4)} x Z_{21}^{(4)} x(v)\right)$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{2}$

$$
\begin{aligned}
= & z_{21}^{(4)} x z_{21}^{(4)} x \partial_{32}(v)+\sigma_{2}\left(z_{21}^{(3)} x z_{21}^{(4)} x \partial_{31}(v)-70 z_{32} y z_{21}^{(8)} x(v)+\right. \\
& \left.z_{32} y z_{21}^{(4)} x \partial_{21}^{(4)}(v)\right) \\
= & -\frac{70}{28} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)}(v)+\frac{15}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)}(v) \\
= & 0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32} y z_{32} y z_{21}^{(3)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{1}$

$$
=\sigma_{2}\left(2 z_{32}^{(2)} y z_{21}^{(3)} x(v)-z_{32} y z_{21}^{(3)} x \partial_{32}(v)\right)-z_{32} y z_{21}^{(2)} x \partial_{31}(v)+
$$

$$
\sigma_{2}\left(z_{32} y z_{32} y \partial_{21}^{(3)}(v)\right)
$$

$$
=\frac{2}{3} z_{32} y z_{21}^{(2)} x \partial_{31}(v)-\frac{2}{3} z_{32} y Z_{31} z \partial_{21}^{(2)}(v)-\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{32}(v)-
$$

$$
z_{32} y z_{21}^{(2)} x \partial_{31}(v)
$$

$$
=-\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{31}(v)-\frac{2}{3} z_{32} y z_{31} z \partial_{21}^{(2)}(v)-\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{32}(v)
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{3} Z_{32} y Z_{31} z Z_{21} x \partial_{21}(v)\right) \\
& =\sigma_{2}\left(\frac{1}{3} Z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}(v)\right)-\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}(v)+ \\
& \sigma_{2}\left(\frac{1}{3} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}(v)\right)-\frac{2}{3} z_{32} y z_{31} z \partial_{21}^{(2)}(v) \\
& =-\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}(v)-\frac{2}{3} z_{32} y z_{31} z \partial_{21}^{(2)}(v) \\
& =-\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{31}(v)-\frac{2}{3} z_{32} y z_{31} z \partial_{21}^{(2)}(v)-\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{32}(v) \\
& \text { - }\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(\mathcal{Z}_{32} y \mathcal{Z}_{32} y \mathcal{Z}_{21}^{(4)} x(v)\right) \quad ; \text { where } v \in \mathcal{D}_{12} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{1} \\
& =\sigma_{2}\left(2 Z_{32}^{(2)} y z_{21}^{(4)} x(v)-Z_{32} y Z_{21}^{(4)} x \partial_{32}(v)-Z_{32} y Z_{21}^{(3)} x \partial_{31}(v)+\right. \\
& \left.z_{32} y z_{32} y \partial_{21}^{(4)}(v)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{2}{12} z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31}(v)-\frac{2}{4} Z_{32} y Z_{31} z \partial_{21}^{(3)}(v)-\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}(v)- \\
& \frac{1}{3} Z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{31}(v) \\
= & -\frac{1}{6} z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31}(v)-\frac{1}{2} z_{32} y Z_{31} z \partial_{21}^{(3)}(v)-\frac{1}{6} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
(& \left.\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{6} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(2)}(v)\right) \\
= & \sigma_{2}\left(\frac{1}{6} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(2)}(v)\right)-\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(2)}(v)+ \\
& \sigma_{2}\left(\frac{1}{6} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(2)}(v)\right)-\frac{3}{6} z_{32} y Z_{31} z \partial_{21}^{(3)}(v) \\
= & -\frac{1}{6} Z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(2)}(v)-\frac{1}{2} Z_{32} y Z_{31} z \partial_{21}^{(3)}(v) \\
= & -\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{31}(v)-\frac{1}{2} z_{32} y z_{31} z \partial_{21}^{(3)}(v)-\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y Z_{32} y Z_{21}^{(5)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{1}$

$$
=\sigma_{2}\left(2 z_{32}^{(2)} y z_{21}^{(5)} x(v)-z_{32} y z_{21}^{(5)} x \partial_{32}(v)-z_{32} y z_{21}^{(4)} x \partial_{31}(v)+\right.
$$

$$
\left.z_{32} y z_{32} y \partial_{21}^{(5)}(v)\right)
$$

$$
=\frac{2}{30} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}(v)-\frac{2}{5} z_{32} y z_{31} z \partial_{21}^{(4)}(v)-\frac{1}{10} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}(v)-
$$

$$
\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}(v)
$$

$$
=-\frac{1}{10} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}(v)-\frac{2}{5} z_{32} y z_{31} z \partial_{21}^{(4)}(v)-\frac{1}{10} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}(v)
$$

And

$$
\begin{aligned}
&\left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{10} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(3)}(v)\right) \\
&= \sigma_{2}\left(\frac{1}{10} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(3)}(v)\right)-\frac{1}{10} Z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(3)}(v)+ \\
& \sigma_{2}\left(\frac{1}{10} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(3)}(v)\right)-\frac{4}{10} Z_{32} y Z_{31} z \partial_{21}^{(4)}(v) \\
&=-\frac{1}{10} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(3)}(v)-\frac{2}{5} Z_{32} y Z_{31} z \partial_{21}^{(4)}(v) \\
&=-\frac{1}{10} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}(v)-\frac{2}{5} Z_{32} y Z_{31} z \partial_{21}^{(4)}(v)-\frac{1}{10} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y \mathcal{Z}_{32} y z_{21}^{(6)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{1}$

$$
\begin{aligned}
= & \sigma_{2}\left(2 z_{32}^{(2)} y z_{21}^{(6)} x(v)-Z_{32} y z_{21}^{(6)} x \partial_{32}(v)-z_{32} y z_{21}^{(5)} x \partial_{31}(v)+\right. \\
& \left.Z_{32} y z_{32} y \partial_{21}^{(6)}(v)\right) \\
= & \frac{2}{60} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}(v)-\frac{2}{6} z_{32} y z_{31} z \partial_{21}^{(5)}(v)- \\
& \frac{1}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}(v)-\frac{1}{10} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}(v) \\
= & -\frac{1}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}(v)-\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(5)}(v)-\frac{1}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{15} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)}(v)\right) \\
& =\sigma_{2}\left(\frac{1}{15} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(4)}(v)\right)-\frac{1}{15} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)}(v)+ \\
& \sigma_{2}\left(\frac{1}{15} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(4)}(v)\right)-\frac{5}{15} z_{32} y Z_{31} z \partial_{21}^{(5)}(v) \\
& =-\frac{1}{15} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)}(v)-\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(5)}(v) \\
& =-\frac{1}{15} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}(v)-\frac{1}{3} Z_{32} y Z_{31} z \partial_{21}^{(5)}(v)-\frac{1}{15} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}(v) \\
& \text { - }\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(\mathcal{Z}_{32} y \mathcal{Z}_{32} y \mathcal{Z}_{21}^{(7)} x(v)\right) \quad ; \text { where } v \in \mathcal{D}_{15} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{1} \\
& =\sigma_{2}\left(2 Z_{32}^{(2)} y Z_{21}^{(7)} x(v)-Z_{32} y Z_{21}^{(7)} x \partial_{32}(v)-Z_{32} y Z_{21}^{(6)} x \partial_{31}(v)+\right. \\
& \left.z_{32} y z_{32} y \partial_{21}^{(7)}(v)\right) \\
& =\frac{2}{105} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v)-\frac{2}{7} z_{32} y Z_{31} z \partial_{21}^{(6)}(v)-\frac{1}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}(v) \\
& -\frac{1}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v) \\
& =-\frac{1}{21} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v)-\frac{2}{7} Z_{32} y z_{31} z \partial_{21}^{(6)}(v)-\frac{1}{21} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{21} z_{32} y z_{31} z z_{21} x \partial_{21}^{(5)}(v)\right) \\
& =\sigma_{2}\left(\frac{1}{21} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(5)}(v)\right)-\frac{1}{21} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)}(v)+
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{2}\left(\frac{1}{21} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)}(v)\right)-\frac{6}{21} z_{32} y z_{31} z \partial_{21}^{(6)}(v) \\
= & -\frac{1}{21} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)}(v)-\frac{2}{7} z_{32} y z_{31} z \partial_{21}^{(6)}(v) \\
= & -\frac{1}{21} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v)-\frac{2}{7} z_{32} y z_{31} z \partial_{21}^{(6)}(v)-\frac{1}{21} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y Z_{32} y Z_{21}^{(8)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{1}$

$$
=\sigma_{2}\left(2 Z_{32}^{(2)} y Z_{21}^{(8)} x(v)-Z_{32} y Z_{21}^{(8)} x \partial_{32}(v)-Z_{32} y Z_{21}^{(7)} x \partial_{31}(v)+\right.
$$

$$
\left.z_{32} y z_{32} y \partial_{21}^{(8)}(v)\right)
$$

$$
=\frac{2}{168} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)-\frac{2}{8} z_{32} y z_{31} z \partial_{21}^{(7)}(v)-
$$

$$
\frac{1}{28} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}(v)-\frac{1}{21} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)
$$

$$
=-\frac{1}{28} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)-\frac{1}{4} z_{32} y Z_{31} z \partial_{21}^{(7)}(v)-\frac{1}{28} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}(v)
$$

And

$$
\begin{aligned}
&\left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{28} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)}(v)\right) \\
&= \sigma_{2}\left(\frac{1}{28} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)}(v)\right)-\frac{1}{28} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)}(v)+ \\
& \sigma_{2}\left(\frac{1}{28} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)}(v)\right)-\frac{7}{28} z_{32} y Z_{31} z \partial_{21}^{(7)}(v) \\
&=-\frac{1}{28} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)}(v)-\frac{1}{4} Z_{32} y Z_{31} z \partial_{21}^{(7)}(v) \\
&=-\frac{1}{28} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)-\frac{1}{4} Z_{32} y Z_{31} z \partial_{21}^{(7)}(v)-\frac{1}{28} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y Z_{32} y Z_{21}^{(9)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$ $=\sigma_{2}\left(2 Z_{32}^{(2)} y z_{21}^{(9)} x(v)\right)-Z_{32} y Z_{21}^{(9)} x \partial_{32}(v)-\sigma_{2}\left(Z_{32} y Z_{21}^{(8)} x \partial_{31}(v)+\right.$ $\left.Z_{32} y Z_{32} y \partial_{21}^{(9)}(v)\right)$
$=\frac{2}{252} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)-\frac{2}{9} z_{32} y z_{31} z \partial_{21}^{(8)}(v)-\frac{1}{28} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)$ $=-\frac{1}{36} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)-\frac{2}{9} Z_{32} y Z_{31} z \partial_{21}^{(8)}(v)$

And

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(4)} x \mathcal{Z}_{21} x(v)\right) ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{1}$

$$
=\sigma_{2}\left(Z_{21}^{(4)} x Z_{21} x \partial_{32}^{(2)}(v)+Z_{21}^{(3)} x Z_{21} x \partial_{32} \partial_{31}(v)+Z_{21}^{(2)} x Z_{21} x \partial_{31}^{(2)}(v)-\right.
$$

$$
\left.5 z_{32}^{(2)} y z_{21}^{(5)} x(v)+z_{32}^{(2)} y z_{21}^{(4)} x \partial_{21}(v)\right)
$$

$$
=-\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}(v)+Z_{32} y z_{31} z \partial_{21}^{(4)}(v)+
$$

$$
\frac{2}{12} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}(v)-\frac{4}{4} z_{32} y z_{31} z \partial_{21}^{(4)}(v)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(3)} x Z_{21}^{(2)} x(v)\right) ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{1}$

$$
\begin{aligned}
= & \sigma_{2}\left(Z_{21}^{(3)} x Z_{21}^{(2)} x \partial_{32}^{(2)}(v)+Z_{21}^{(2)} x Z_{21}^{(2)} x \partial_{32} \partial_{31}(v)+Z_{21} x Z_{21}^{(2)} x \partial_{31}^{(2)}(v)-\right. \\
& \left.10 Z_{32}^{(2)} y Z_{21}^{(5)} x(v)+Z_{32}^{(2)} y Z_{21}^{(3)} x \partial_{21}^{(2)}(v)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{36} Z_{32} y \mathcal{Z}_{31} z \mathcal{Z}_{21} x \partial_{21}^{(7)}(v)\right) \\
& =\sigma_{2}\left(\frac{1}{36} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)}(v)\right)-\frac{1}{36} Z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(7)}(v)+ \\
& \sigma_{2}\left(\frac{1}{36} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(7)}(v)\right)-\frac{8}{36} z_{32} y Z_{31} z \partial_{21}^{(8)}(v) \\
& =-\frac{1}{36} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)-\frac{2}{9} Z_{32} y Z_{31} z \partial_{21}^{(8)}(v) \\
& \text { - }\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(3)} x Z_{21} x(v)\right) ; \text { where } v \in \mathcal{D}_{12} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{1} \\
& =\sigma_{2}\left(Z_{21}^{(3)} x Z_{21} x \partial_{32}^{(2)}(v)+Z_{21}^{(2)} x Z_{21} x \partial_{32} \partial_{31}(v)+Z_{21} x Z_{21} x \partial_{31}^{(2)}(v)-\right. \\
& \left.4 z_{32}^{(2)} y Z_{21}^{(4)} x(v)+z_{32}^{(2)} y Z_{21}^{(3)} x \partial_{21}(v)\right) \\
& =-\frac{1}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31}(v)+Z_{32} y Z_{31} z \partial_{21}^{(3)}(v)+\frac{1}{3} Z_{32} y z_{21}^{(2)} x \partial_{31} \partial_{21}(v)- \\
& \frac{3}{3} z_{32} y z_{31} z \partial_{21}^{(3)}(v) \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
= & -\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}(v)+2 z_{32} y z_{31} z \partial_{21}^{(4)}(v)+ \\
& \frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}(v)-\frac{6}{3} z_{32} y z_{31} z \partial_{21}^{(4)}(v) \\
= & 0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(5)} x Z_{21} x(v)\right) ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{1}$ $=\sigma_{2}\left(Z_{21}^{(5)} x Z_{21} x \partial_{32}^{(2)}(v)+Z_{21}^{(4)} x Z_{21} x \partial_{32} \partial_{31}(v)+Z_{21}^{(3)} x Z_{21} x \partial_{31}^{(2)}(v)-\right.$ $\left.6 Z_{32}^{(2)} y z_{21}^{(6)} x(v)+Z_{32}^{(2)} y z_{21}^{(5)} x \partial_{21}(v)\right)$
$=-\frac{1}{10} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}(v)+z_{32} y z_{31} z \partial_{21}^{(5)}(v)+\frac{3}{30} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}(v)$
$-\frac{5}{5} z_{32} y z_{31} z \partial_{21}^{(5)}(v)$
$=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(4)} x Z_{21}^{(2)} x(v)\right) ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{1}$ $=\sigma_{2}\left(Z_{21}^{(4)} x Z_{21}^{(2)} x \partial_{32}^{(2)}(v)+Z_{21}^{(3)} x Z_{21}^{(2)} x \partial_{32} \partial_{31}(v)+Z_{21}^{(2)} x Z_{21}^{(2)} x \partial_{31}^{(2)}(v)-\right.$ $\left.15 z_{32}^{(2)} y z_{21}^{(6)} x(v)+z_{32}^{(2)} y z_{21}^{(4)} x \partial_{21}^{(2)}(v)\right)$ $=-\frac{1}{4} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}(v)+\frac{5}{2} z_{32} y z_{31} z \partial_{21}^{(5)}(v)+\frac{3}{12} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}(v)$ $-\frac{10}{4} z_{32} y Z_{31} z \partial_{21}^{(5)}(v)$
$=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(3)} x Z_{21}^{(3)} x(v)\right) ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{1}$ $=\sigma_{2}\left(Z_{21}^{(3)} x Z_{21}^{(3)} x \partial_{32}^{(2)}(v)+Z_{21}^{(2)} x Z_{21}^{(3)} x \partial_{32} \partial_{31}(v)+Z_{21} x Z_{21}^{(3)} x \partial_{31}^{(2)}(v)-\right.$ $\left.20 z_{32}^{(2)} y z_{21}^{(6)} x(v)+z_{32}^{(2)} y z_{21}^{(3)} x \partial_{21}^{(3)}(v)\right)$
$=-\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}(v)+\frac{10}{3} z_{32} y z_{31} z \partial_{21}^{(5)}(v)+\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}(v)$ $-\frac{10}{3} z_{32} y z_{31} z \partial_{21}^{(5)}(v)$
$=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(6)} x Z_{21} x(v)\right)$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{1}$

$$
\begin{aligned}
= & \sigma_{2}\left(Z_{21}^{(6)} x z_{21} x \partial_{32}^{(2)}(v)+Z_{21}^{(5)} x z_{21} x \partial_{32} \partial_{31}(v)+z_{21}^{(4)} x z_{21} x \partial_{31}^{(2)}(v)-\right. \\
& \left.7 Z_{32}^{(2)} y z_{21}^{(7)} x(v)+Z_{32}^{(2)} y z_{21}^{(6)} x \partial_{21}(v)\right) \\
= & -\frac{1}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v)+z_{32} y z_{31} z \partial_{21}^{(6)}(v)+\frac{4}{60} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v) \\
& -\frac{6}{6} Z_{32} y Z_{31} z \partial_{21}^{(6)}(v) \\
= & 0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32}^{(2)} y z_{21}^{(5)} x Z_{21}^{(2)} x(v)\right)$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{1}$ $=\sigma_{2}\left(Z_{21}^{(5)} x z_{21}^{(2)} x \partial_{32}^{(2)}(v)+Z_{21}^{(4)} x z_{21}^{(2)} x \partial_{32} \partial_{31}(v)+Z_{21}^{(3)} x z_{21}^{(2)} x \partial_{31}^{(2)}(v)-\right.$ $\left.21 z_{32}^{(2)} y z_{21}^{(7)} x(v)+Z_{32}^{(2)} y z_{21}^{(5)} x \partial_{21}^{(2)}(v)\right)$
$=-\frac{1}{5} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v)+3 Z_{32} y z_{31} z \partial_{21}^{(6)}(v)+\frac{6}{30} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v)$ $-\frac{15}{5} z_{32} y z_{31} z \partial_{21}^{(6)}(v)$
$=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(4)} x Z_{21}^{(3)} x(v)\right)$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{1}$ $=\sigma_{2}\left(Z_{21}^{(4)} x z_{21}^{(3)} x \partial_{32}^{(2)}(v)+Z_{21}^{(3)} x z_{21}^{(3)} x \partial_{32} \partial_{31}(v)+Z_{21}^{(2)} x z_{21}^{(3)} x \partial_{31}^{(2)}(v)-\right.$ $\left.35 z_{32}^{(2)} y z_{21}^{(7)} x(v)+z_{32}^{(2)} y z_{21}^{(4)} x \partial_{21}^{(3)}(v)\right)$

$$
=-\frac{1}{3} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v)+5 Z_{32} y z_{31} z \partial_{21}^{(6)}(v)+\frac{4}{12} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v)
$$

$$
-\frac{20}{4} Z_{32} y Z_{31} z \partial_{21}^{(6)}(v)=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(3)} x Z_{21}^{(4)} x(v)\right)$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{1}$ $=\sigma_{2}\left(Z_{21}^{(3)} x Z_{21}^{(4)} x \partial_{32}^{(2)}(v)+Z_{21}^{(2)} x Z_{21}^{(4)} x \partial_{32} \partial_{31}(v)+Z_{21} x Z_{21}^{(4)} x \partial_{31}^{(2)}(v)-\right.$ $\left.35 z_{32}^{(2)} y z_{21}^{(7)} x(v)+z_{32}^{(2)} y z_{21}^{(3)} x \partial_{21}^{(4)}(v)\right)$

$$
\begin{aligned}
= & -\frac{1}{3} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v)+5 z_{32} y z_{31} z \partial_{21}^{(6)}(v)+\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v) \\
& -\frac{15}{3} z_{32} y z_{31} z \partial_{21}^{(6)}(v) \\
= & 0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(7)} x Z_{21} x(v)\right) ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{1}$

$$
=Z_{21}^{(7)} x Z_{21} x \partial_{32}^{(2)}(v)+\sigma_{2}\left(Z_{21}^{(6)} x Z_{21} x \partial_{32} \partial_{31}(v)+Z_{21}^{(5)} x Z_{21} x \partial_{31}^{(2)}(v)-\right.
$$

$$
\left.8 Z_{32}^{(2)} y Z_{21}^{(8)} x(v)+Z_{32}^{(2)} y Z_{21}^{(7)} x \partial_{21}(v)\right)
$$

$$
=-\frac{1}{21} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)+z_{32} y z_{31} z \partial_{21}^{(7)}(v)+\frac{5}{105} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)
$$

$$
-\frac{7}{7} z_{32} y z_{31} z \partial_{21}^{(7)}(v)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(6)} x Z_{21}^{(2)} x(v)\right) ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{1}$

$$
\begin{aligned}
= & Z_{21}^{(6)} x Z_{21}^{(2)} x \partial_{32}^{(2)}(v)+\sigma_{2}\left(Z_{21}^{(5)} x Z_{21}^{(2)} x \partial_{32} \partial_{31}(v)+Z_{21}^{(4)} x Z_{21}^{(2)} x \partial_{31}^{(2)}(v)-\right. \\
& \left.28 Z_{32}^{(2)} y Z_{21}^{(8)} x(v)+Z_{32}^{(2)} y Z_{21}^{(6)} x \partial_{21}^{(2)}(v)\right) \\
= & -\frac{1}{6} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)+\frac{7}{2} z_{32} y Z_{31} z \partial_{21}^{(7)}(v)+\frac{10}{60} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v) \\
& -\frac{21}{6} z_{32} y z_{31} z \partial_{21}^{(7)}(v) \\
= & 0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(5)} x Z_{21}^{(3)} x(v)\right) ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{1}$ $=Z_{21}^{(5)} x Z_{21}^{(3)} x \partial_{32}^{(2)}(v)+\sigma_{2}\left(Z_{21}^{(4)} x Z_{21}^{(3)} x \partial_{32} \partial_{31}(v)+Z_{21}^{(3)} x Z_{21}^{(3)} x \partial_{31}^{(2)}(v)-\right.$ $\left.56 Z_{32}^{(2)} y Z_{21}^{(8)} x(v)+Z_{32}^{(2)} y Z_{21}^{(5)} x \partial_{21}^{(3)}(v)\right)$

$$
=-\frac{1}{3} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)+7 Z_{32} y Z_{31} z \partial_{21}^{(7)}(v)+\frac{10}{30} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)
$$

$$
-\frac{35}{5} z_{32} y z_{31} z \partial_{21}^{(7)}(v)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(4)} x z_{21}^{(4)} x(v)\right)$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{1}$ $=Z_{21}^{(4)} x Z_{21}^{(4)} x \partial_{32}^{(2)}(v)+\sigma_{2}\left(Z_{21}^{(3)} x Z_{21}^{(4)} x \partial_{32} \partial_{31}(v)+Z_{21}^{(2)} x Z_{21}^{(4)} x \partial_{31}^{(2)}(v)-\right.$ $\left.70 z_{32}^{(2)} y z_{21}^{(8)} x(v)+z_{32}^{(2)} y z_{21}^{(4)} x \partial_{21}^{(4)}(v)\right)$
$=-\frac{5}{12} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)+\frac{35}{4} z_{32} y z_{31} z \partial_{21}^{(7)}(v)+$ $\frac{5}{12} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)-\frac{35}{4} z_{32} y Z_{31} z \partial_{21}^{(7)}(v)$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32}^{(2)} y Z_{21}^{(3)} x z_{21}^{(5)} x(v)\right)$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{1}$ $=Z_{21}^{(3)} x Z_{21}^{(5)} x \partial_{32}^{(2)}(v)+\sigma_{2}\left(Z_{21}^{(2)} x Z_{21}^{(5)} x \partial_{32} \partial_{31}(v)+Z_{21} x Z_{21}^{(5)} x \partial_{31}^{(2)}(v)-\right.$ $\left.56 z_{32}^{(2)} y z_{21}^{(8)} x(v)+z_{32}^{(2)} y z_{21}^{(3)} x \partial_{21}^{(5)}(v)\right)$ $=-\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)+7 Z_{32} y Z_{31} z \partial_{21}^{(7)}(v)+$ $\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)-\frac{21}{3} z_{32} y z_{31} z \partial_{21}^{(7)}(v)$ $=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(8)} x Z_{21} x(v)\right)$; where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$ $=z_{21}^{(8)} x Z_{21} x \partial_{32}^{(2)}(v)+Z_{21}^{(7)} x Z_{21} x \partial_{32} \partial_{31}(v)+\sigma_{2}\left(Z_{21}^{(6)} x Z_{21} x \partial_{31}^{(2)}(v)-\right.$ $\left.9 z_{32}^{(2)} y z_{21}^{(9)} x(v)+z_{32}^{(2)} y z_{21}^{(8)} x \partial_{21}(v)\right)$ $=-\frac{1}{28} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)+z_{32} y z_{31} z \partial_{21}^{(8)}(v)+$ $\frac{6}{168} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)-\frac{8}{8} Z_{32} y \mathcal{Z}_{31} z \partial_{21}^{(8)}(v)$ $=0$
- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(7)} x Z_{21}^{(2)} x(v)\right)$; where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$ $=Z_{21}^{(7)} x Z_{21}^{(2)} x \partial_{32}^{(2)}(v)+Z_{21}^{(6)} x z_{21}^{(2)} x \partial_{32} \partial_{31}(v)+\sigma_{2}\left(Z_{21}^{(5)} x z_{21}^{(2)} x \partial_{31}^{(2)}(v)-\right.$ $\left.36 z_{32}^{(2)} y z_{21}^{(9)} x(v)+z_{32}^{(2)} y z_{21}^{(7)} x \partial_{21}^{(2)}(v)\right)$

$$
\begin{aligned}
= & -\frac{1}{7} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)+4 z_{32} y z_{31} z \partial_{21}^{(8)}(v)+ \\
& \frac{15}{105} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)-\frac{28}{7} z_{32} y z_{31} z \partial_{21}^{(8)}(v) \\
= & 0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(6)} x Z_{21}^{(3)} x(v)\right) ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$

$$
=Z_{21}^{(6)} x Z_{21}^{(3)} x \partial_{32}^{(2)}(v)+Z_{21}^{(5)} x Z_{21}^{(3)} x \partial_{32} \partial_{31}(v)+\sigma_{2}\left(Z_{21}^{(4)} x Z_{21}^{(3)} x \partial_{31}^{(2)}(v)-\right.
$$

$$
\left.84 Z_{32}^{(2)} y Z_{21}^{(9)} x(v)+Z_{32}^{(2)} y Z_{21}^{(6)} x \partial_{21}^{(3)}(v)\right)
$$

$$
=-\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)+\frac{28}{3} z_{32} y z_{31} z \partial_{21}^{(8)}(v)+
$$

$$
\frac{20}{60} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)-\frac{56}{6} z_{32} y z_{31} z \partial_{21}^{(8)}(v)
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(5)} x Z_{21}^{(4)} x(v)\right) ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$

$$
\begin{aligned}
= & Z_{21}^{(5)} x Z_{21}^{(4)} x \partial_{32}^{(2)}(v)+Z_{21}^{(4)} x Z_{21}^{(4)} x \partial_{32} \partial_{31}(v)+\sigma_{2}\left(Z_{21}^{(3)} x Z_{21}^{(4)} x \partial_{31}^{(2)}(v)-\right. \\
& \left.126 Z_{32}^{(2)} y Z_{21}^{(9)} x(v)+Z_{32}^{(2)} y Z_{21}^{(5)} x \partial_{21}^{(4)}(v)\right) \\
= & -\frac{1}{2} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)+14 Z_{32} y Z_{31} z \partial_{21}^{(8)}(v)+\frac{15}{30} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v) \\
& -\frac{70}{5} z_{32} y z_{31} z \partial_{21}^{(8)}(v) \\
= & 0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{21}^{(4)} x Z_{21}^{(5)} x(v)\right) ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$ $=Z_{21}^{(4)} x Z_{21}^{(5)} x \partial_{32}^{(2)}(v)+Z_{21}^{(3)} x Z_{21}^{(5)} x \partial_{32} \partial_{31}(v)+\sigma_{2}\left(Z_{21}^{(2)} x Z_{21}^{(5)} x \partial_{31}^{(2)}(v)-\right.$

$$
\begin{aligned}
& \left.126 z_{32}^{(2)} y z_{21}^{(9)} x(v)+z_{32}^{(2)} y z_{21}^{(4)} x \partial_{21}^{(5)}(v)\right) \\
= & -\frac{1}{2} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)+14 z_{32} y z_{31} z \partial_{21}^{(8)}(v)+\frac{6}{12} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v) \\
& -\frac{56}{4} z_{32} y z_{31} z \partial_{21}^{(8)}(v)
\end{aligned}
$$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y z_{21}^{(3)} x z_{21}^{(6)} x(v)\right)$; where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$ $=z_{21}^{(3)} x z_{21}^{(6)} x \partial_{32}^{(2)}(v)+z_{21}^{(2)} x z_{21}^{(6)} x \partial_{32} \partial_{31}(v)+\sigma_{2}\left(z_{21} x z_{21}^{(6)} x \partial_{31}^{(2)}(v)-\right.$ $\left.84 z_{32}^{(2)} y z_{21}^{(9)} x(v)+Z_{32}^{(2)} y z_{21}^{(3)} x \partial_{21}^{(6)}(v)\right)$
$=-\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)+\frac{28}{3} z_{32} y z_{31} z \partial_{21}^{(8)}(v)+\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)$ $-\frac{28}{3} Z_{32} y Z_{31} z \partial_{21}^{(8)}(v)$

$$
=0
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y Z_{32} y Z_{32} \mathcal{y}(v)\right) \quad ;$ where $v \in \mathcal{D}_{8} \otimes \mathcal{D}_{10} \otimes \mathcal{D}_{0}$

$$
\begin{aligned}
& =\sigma_{2}\left(2 z_{32}^{(2)} y z_{32} y(v)-2 z_{32} y z_{32}^{(2)} y(v)+z_{32} y z_{32} y \partial_{32}(v)\right) \\
& =0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y \mathcal{Z}_{32} y Z_{21}^{(4)} x(v)\right)$; where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{0}$ $=\sigma_{2}\left(3 z_{32}^{(3)} y z_{21}^{(4)} x(v)-Z_{32}^{(2)} y z_{21}^{(4)} x \partial_{32}(v)-z_{32}^{(2)} y z_{21}^{(3)} x \partial_{31}(v)+\right.$ $\left.z_{32}^{(2)} y z_{32} y \partial_{21}^{(4)}(v)\right)$
$=\frac{3}{3} z_{32} y z_{21}^{(2)} x \partial_{31}^{(2)}(v)-\frac{3}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}^{(2)}(v)-\frac{3}{3} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{32}(v)-$ $\frac{1}{12} z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31} \partial_{32}(v)+\frac{1}{4} z_{32} y Z_{31} z \partial_{21}^{(3)} \partial_{32}(v)-$

$$
\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{31} \partial_{31}(v)+\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(2)} \partial_{31}(v)
$$

$$
=\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{31}^{(2)}(v)-\frac{1}{2} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}^{(2)}(v)-\frac{3}{4} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{32}(v)-
$$

$$
\frac{1}{12} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{32} \partial_{31}(v)+\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(2)} \partial_{31}(v)
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{6} z_{32} y Z_{31} z Z_{21} x \partial_{21} \partial_{31}(v)-\right. \\
& \left.\frac{1}{4} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(2)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(-\frac{1}{6} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(2)} \partial_{32}(v)\right)+\frac{1}{6} z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(2)} \partial_{32}(v)-
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{2}\left(\frac{1}{6} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(2)} \partial_{32}(v)\right)+\frac{1}{6} z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(2)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{1}{4} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21} \partial_{31}(v)\right)-\frac{1}{4} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{4} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21} \partial_{31}(v)\right)-\frac{1}{4} Z_{32} y Z_{31} z \partial_{21} \partial_{21} \partial_{31}(v) \\
& =-\frac{2}{4} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}^{(2)}(v)-\frac{1}{4} Z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{32} \partial_{31}(v)- \\
& \frac{3}{4} Z_{32} y Z_{31} z \partial_{21}^{(3)} \partial_{32}(v)+\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{32} \partial_{31}(v)+\frac{2}{6} Z_{32} y Z_{21}^{(2)} \partial_{31}^{(2)}(v)+ \\
& \frac{2}{6} z_{32} y z_{31} z \partial_{21}^{(2)} \partial_{31}(v) \\
& =\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{31}^{(2)}(v)-\frac{1}{2} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}^{(2)}(v)-\frac{3}{4} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{32}(v)- \\
& \frac{1}{12} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{32} \partial_{31}(v)+\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(2)} \partial_{31}(v) \\
& \text { - }\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{32} y Z_{21}^{(5)} x(v)\right) \text {; where } v \in \mathcal{D}_{13} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{0} \\
& =\sigma_{2}\left(3 Z_{32}^{(3)} y Z_{21}^{(5)} x(v)-Z_{32}^{(2)} y Z_{21}^{(5)} x \partial_{32}(v)-Z_{32}^{(2)} y z_{21}^{(4)} x \partial_{31}(v)+\right. \\
& \left.Z_{32}^{(2)} y Z_{32} y \partial_{21}^{(5)}(v)\right) \\
& =\frac{3}{9} z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31}^{(2)}(v)-\frac{21}{90} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)-\frac{6}{9} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{32}(v) \\
& -\frac{1}{30} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31} \partial_{32}(v)+\frac{1}{5} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{32}(v)- \\
& \frac{1}{12} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{31} \partial_{31}(v)+\frac{1}{4} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{31}(v) \\
& =\frac{1}{6} Z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31}^{(2)}(v)-\frac{7}{30} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)- \\
& \frac{7}{15} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{32}(v)-\frac{1}{30} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)+ \\
& \frac{1}{4} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{12} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(2)} \partial_{31}(v)-\right. \\
& \left.\frac{7}{60} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(3)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(-\frac{1}{12} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(3)} \partial_{32}(v)\right)+\frac{1}{12} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(3)} \partial_{32}(v)-
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{32} y Z_{21}^{(6)} x(v)\right) ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{0}$ $=\sigma_{2}\left(3 z_{32}^{(3)} y z_{21}^{(6)} x(v)-z_{32}^{(2)} y z_{21}^{(6)} x \partial_{32}(v)-z_{32}^{(2)} y z_{21}^{(5)} x \partial_{31}(v)+\right.$ $\left.z_{32}^{(2)} y z_{32} y \partial_{21}^{(6)}(v)\right)$

$$
=\frac{3}{18} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-\frac{6}{45} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{3}{6} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v)-\frac{1}{60} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31} \partial_{32}(v)+
$$

$$
\frac{1}{6} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v)-\frac{1}{30} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31} \partial_{31}(v)+\frac{1}{5} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{31}(v)
$$

$$
=\frac{1}{10} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-\frac{2}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v)-\frac{1}{60} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)+
$$

$$
\frac{1}{5} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{31}(v)
$$

And

$$
\begin{aligned}
& \sigma_{2}\left(\frac{1}{12} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(3)} \partial_{32}(v)\right)+\frac{1}{12} z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(3)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{7}{60} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(2)} \partial_{31}(v)\right)-\frac{7}{60} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(2)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{7}{60} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(2)} \partial_{31}(v)\right)-\frac{7}{60} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(2)} \partial_{31}(v) \\
& =\frac{1}{12} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)+\frac{2}{12} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{31}^{(2)}(v)+ \\
& \frac{3}{12} Z_{32} y Z_{31} z \partial_{21}^{(3)} \partial_{31}(v)-\frac{14}{60} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)- \\
& \frac{7}{60} Z_{32} y Z_{21}^{(2)} \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)-\frac{28}{60} Z_{32} y Z_{31} z \partial_{21}^{(4)} \partial_{32}(v) \\
& =\frac{1}{6} Z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31}^{(2)}(v)-\frac{7}{30} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)- \\
& \frac{7}{15} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{32}(v)-\frac{1}{30} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)+ \\
& \frac{1}{4} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{32} y Z_{21}^{(7)} x(v)\right) ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{0}$ $=\sigma_{2}\left(3 z_{32}^{(3)} y z_{21}^{(7)} x(v)-z_{32}^{(2)} y z_{21}^{(7)} x \partial_{32}(v)-z_{32}^{(2)} y z_{21}^{(6)} x \partial_{31}(v)+\right.$ $\left.z_{32}^{(2)} y Z_{32} y \partial_{21}^{(7)}(v)\right)$
$=\frac{3}{30} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\frac{3}{35} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)-$ $\frac{6}{15} Z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{32}(v)-\frac{1}{105} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31} \partial_{32}(v)+$ $\frac{1}{7} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)-\frac{1}{60} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31} \partial_{31}(v)+\frac{1}{6} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{31}(v)$

$$
=\frac{1}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\frac{3}{35} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)-\frac{9}{35} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)
$$

$$
-\frac{1}{105} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31} \partial_{32}(v)+\frac{1}{6} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{31}(v)
$$

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{20} Z_{32} \mathcal{y} Z_{31} z Z_{21} x \partial_{21}^{(3)} \partial_{31}(v)-\right. \\
& \left.\frac{1}{15} z_{32} y z_{31} z z_{21} x \partial_{21}^{(4)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(-\frac{1}{20} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(4)} \partial_{32}(v)\right)+\frac{1}{20} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)} \partial_{32}(v)- \\
& \sigma_{2}\left(\frac{1}{20} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(4)} \partial_{32}(v)\right)+\frac{1}{20} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(4)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{1}{15} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(3)} \partial_{31}(v)\right)-\frac{1}{15} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(3)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{15} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(3)} \partial_{31}(v)\right)-\frac{1}{15} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(3)} \partial_{31}(v) \\
& =\frac{1}{20} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)+\frac{2}{20} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)+ \\
& \frac{4}{20} Z_{32} y Z_{31} z \partial_{21}^{(4)} \partial_{31}(v)-\frac{2}{15} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{15} z_{32} y Z_{21}^{(2)} \partial_{21}^{(3)} \partial_{31} \partial_{32}(v)-\frac{5}{15} Z_{32} y Z_{31} z \partial_{21}^{(5)} \partial_{32}(v) \\
& =\frac{1}{10} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-\frac{2}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v)-\frac{1}{60} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)+ \\
& \frac{1}{5} z_{32} y Z_{31} z \partial_{21}^{(4)} \partial_{31}(v)
\end{aligned}
$$

And

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{32} y Z_{21}^{(8)} x(v)\right) ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{0}$

$$
=\sigma_{2}\left(3 Z_{32}^{(3)} y z_{21}^{(8)} x(v)-Z_{32}^{(2)} y z_{21}^{(8)} x \partial_{32}(v)-Z_{32}^{(2)} y z_{21}^{(7)} x \partial_{31}(v)+\right.
$$

$$
\left.Z_{32}^{(2)} y Z_{32} y \partial_{21}^{(8)}(v)\right)
$$

$$
=\frac{3}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{15}{252} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{3}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{1}{168} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31} \partial_{32}(v)+
$$

$$
\frac{1}{8} Z_{32} y Z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{1}{105} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31} \partial_{31}(v)+
$$

$$
\frac{1}{7} z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{31}(v)
$$

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{30} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{31}(v)-\right. \\
& \left.\frac{3}{70} z_{32} y z_{31} z z_{21} x \partial_{21}^{(5)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(-\frac{1}{30} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(5)} \partial_{32}(v)\right)+\frac{1}{30} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)} \partial_{32}(v)- \\
& \sigma_{2}\left(\frac{1}{30} z_{32} \mathcal{y} Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)} \partial_{32}(v)\right)+\frac{1}{30} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(5)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{3}{70} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(4)} \partial_{31}(v)\right)-\frac{3}{70} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{3}{70} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(4)} \partial_{31}(v)\right)-\frac{3}{70} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(4)} \partial_{31}(v) \\
& =\frac{1}{30} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)+\frac{2}{30} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)+ \\
& \frac{5}{30} z_{32} y Z_{31} z \partial_{21}^{(4)} \partial_{31}(v)-\frac{6}{70} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)- \\
& \frac{3}{70} z_{32} y Z_{21}^{(2)} \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)-\frac{18}{70} z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{32}(v) \\
& =\frac{1}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\frac{3}{35} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)- \\
& \frac{9}{35} z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{32}(v)-\frac{1}{105} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)+ \\
& \frac{1}{6} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{31}(v)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{5}{84} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{5}{24} z_{32} y Z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{1}{168} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)+ \\
& \frac{1}{7} z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{31}(v)
\end{aligned}
$$

And
$\bullet\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{32} y Z_{21}^{(9)} x(v)\right)$; where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0}$

$$
=\sigma_{2}\left(3 z_{32}^{(3)} y z_{21}^{(9)} x(v)-z_{32}^{(2)} y z_{21}^{(9)} x \partial_{32}(v)-z_{32}^{(2)} y z_{21}^{(8)} x \partial_{31}(v)+\right.
$$

$$
\left.z_{32}^{(2)} y z_{32} y \partial_{21}^{(9)}(v)\right)
$$

$$
=\frac{3}{63} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{3}{84} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)-
$$

$$
\frac{1}{252} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31} \partial_{32}(v)+\frac{1}{9} z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{32}(v)-
$$

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{42} Z_{32} \mathcal{y} Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{31}(v)-\right. \\
& \left.\frac{5}{168} z_{32} y z_{31} z z_{21} x \partial_{21}^{(6)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(-\frac{1}{42} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)} \partial_{32}(v)\right)+\frac{1}{42} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{32}(v)- \\
& \sigma_{2}\left(\frac{1}{30} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{32}(v)\right)+\frac{1}{42} z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(6)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{5}{168} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(5)} \partial_{31}(v)\right)-\frac{5}{168} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{5}{168} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)} \partial_{31}(v)\right)-\frac{5}{168} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(5)} \partial_{31}(v) \\
& =\frac{1}{42} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)+\frac{2}{42} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)+ \\
& \frac{6}{42} Z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{31}(v)-\frac{10}{168} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{5}{168} Z_{32} y Z_{21}^{(2)} \partial_{21}^{(5)} \partial_{31} \partial_{32}(v)-\frac{35}{168} Z_{32} y Z_{31} z \partial_{21}^{(7)} \partial_{32}(v) \\
& =\frac{1}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{5}{84} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{5}{24} z_{32} y Z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{1}{168} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)+ \\
& \frac{1}{7} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{31}(v)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{168} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31} \partial_{31}(v)+\frac{1}{8} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v) \\
= & \frac{1}{28} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)+\frac{2}{63} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)+ \\
& \frac{1}{9} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{32}(v)+\frac{1}{8} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v)
\end{aligned}
$$

And

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{32} y Z_{21}^{(10)} x(v)\right)$; where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$

$$
=\sigma_{2}\left(3 Z_{32}^{(3)} y z_{21}^{(10)} x(v)\right)-Z_{32}^{(2)} y z_{21}^{(10)} x \partial_{32}(v)-\sigma_{2}\left(z_{32}^{(2)} y Z_{21}^{(9)} x \partial_{31}(v)+\right.
$$

$$
\left.z_{32}^{(2)} y z_{32} y \partial_{21}^{(10)}(v)\right)
$$

$$
=\frac{3}{84} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{1}{252} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31} \partial_{31}(v)+
$$

$$
\frac{1}{9} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{31}(v)
$$

$$
=\frac{1}{36} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)+\frac{1}{9} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{31}(v)
$$

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{56} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{31}(v)+\right. \\
& \left.\frac{1}{72} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(-\frac{1}{56} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)} \partial_{32}(v)\right)+\frac{1}{56} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(7)} \partial_{32}(v)- \\
& \sigma_{2}\left(\frac{1}{56} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(7)} \partial_{32}(v)\right)+\frac{1}{56} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(7)} \partial_{32}(v)- \\
& \sigma_{2}\left(\frac{1}{72} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)} \partial_{31}(v)\right)+\frac{1}{72} Z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{31}(v)- \\
& \sigma_{2}\left(\frac{1}{72} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{31}(v)\right)+\frac{1}{72} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(6)} \partial_{31}(v) \\
& =\frac{1}{56} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)+\frac{2}{56} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)+ \\
& \frac{7}{56} Z_{32} y Z_{31} z \partial_{21}^{(7)} \partial_{31}(v)+\frac{1}{72} Z_{32} y Z_{21}^{(2)} \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)+ \\
& \frac{8}{72} Z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{32}(v) \\
& =\frac{1}{28} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)+\frac{2}{63} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)+ \\
& \frac{1}{9} z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{32}(v)+\frac{1}{8} Z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{72} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{31}(v)\right) \\
& =\sigma_{2}\left(-\frac{1}{72} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)} \partial_{31}(v)\right)+\frac{1}{72} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(7)} \partial_{31}(v)- \\
& \sigma_{2}\left(\frac{1}{72} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(7)} \partial_{31}(v)\right)+\frac{1}{72} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(7)} \partial_{31}(v) \\
& =\frac{2}{72} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)+\frac{8}{72} z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{31}(v) \\
& =\frac{1}{36} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)+\frac{1}{9} z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{31}(v)
\end{aligned}
$$

$\bullet\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y Z_{32}^{(2)} y Z_{21}^{(4)} x(v)\right) ;$ where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{0}$

$$
=\sigma_{2}\left(3 Z_{32}^{(3)} y z_{21}^{(4)} x(v)-z_{32} y Z_{21}^{(4)} x \partial_{32}^{(2)}(v)-Z_{32} y Z_{21}^{(3)} x \partial_{32} \partial_{31}(v)-\right.
$$

$$
\left.z_{32} y z_{21}^{(2)} x \partial_{31}^{(2)}(v)+z_{32} y z_{32}^{(2)} y \partial_{21}^{(4)}(v)\right)
$$

$$
=\frac{3}{3} z_{32} y z_{21}^{(2)} x \partial_{31}^{(2)}(v)-\frac{3}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{3}{3} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{32}(v)-\frac{1}{6} z_{32} y z_{32}^{(2)} y \partial_{21}^{(2)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{1}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{32} \partial_{31}(v)-Z_{32} y Z_{21}^{(2)} x \partial_{31}^{(2)}(v)
$$

$$
=-\frac{2}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}^{(2)}(v)-z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{32}(v)-
$$

$$
\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{32} \partial_{31}(v)
$$

And

$$
\begin{aligned}
(& \left.\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{\mathcal { M } _ { 2 }}}\right)\left(-\frac{1}{3} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(2)} \partial_{32}(v)\right) \\
= & \sigma_{2}\left(\frac{1}{3} z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(2)} \partial_{32}(v)\right)-\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(2)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{1}{3} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(2)} \partial_{32}(v)\right)-\frac{1}{3} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(2)} \partial_{32}(v) \\
= & -\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(2)} \partial_{32}(v)-\frac{1}{3} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(2)} \partial_{32}(v) \\
= & -\frac{2}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}^{(2)}(v)-z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{32}(v)- \\
& \frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{32} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32} y z_{32}^{(2)} y z_{21}^{(5)} x(v)\right)$; where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{0}$

$$
\begin{aligned}
= & \sigma_{2}\left(3 z_{32}^{(3)} y z_{21}^{(5)} x(v)-z_{32} y z_{21}^{(5)} x \partial_{32}^{(2)}(v)-z_{32} y z_{21}^{(4)} x \partial_{32} \partial_{31}(v)-\right. \\
& \left.z_{32} y z_{21}^{(3)} x \partial_{31}^{(2)}(v)+z_{32} y z_{32}^{(2)} y \partial_{21}^{(5)}(v)\right) \\
= & \frac{3}{9} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{31}^{(2)}(v)-\frac{21}{90} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)- \\
& \frac{6}{9} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{32}(v)-\frac{1}{10} z_{32} y z_{32}^{(2)} y \partial_{21}^{(3)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)-\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{31}^{(2)}(v) \\
= & -\frac{1}{3} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)-\frac{2}{3} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{32}(v)- \\
& \frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
(& \left.\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{6} Z_{32} y z_{31} z Z_{21} x \partial_{21}^{(3)} \partial_{32}(v)\right) \\
= & \sigma_{2}\left(\frac{1}{6} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(3)} \partial_{32}(v)\right)-\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(3)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{1}{6} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(3)} \partial_{32}(v)\right)-\frac{1}{6} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(3)} \partial_{32}(v) \\
= & -\frac{1}{6} z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(3)} \partial_{32}(v)-\frac{1}{6} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(3)} \partial_{32}(v) \\
= & -\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)-\frac{2}{3} Z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{32}(v)- \\
& \frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32} y z_{32}^{(2)} y z_{21}^{(6)} x(v)\right)$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{0}$

$$
\begin{aligned}
= & \sigma_{2}\left(3 z_{32}^{(3)} y z_{21}^{(6)} x(v)-z_{32} y z_{21}^{(6)} x \partial_{32}^{(2)}(v)-z_{32} y z_{21}^{(5)} x \partial_{32} \partial_{31}(v)-\right. \\
& \left.z_{32} y z_{21}^{(4)} x \partial_{31}^{(2)}(v)+z_{32} y z_{32}^{(2)} y \partial_{21}^{(6)}(v)\right) \\
= & \frac{3}{18} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-\frac{6}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)- \\
& \frac{3}{6} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v)-\frac{1}{15} z_{32} y z_{32}^{(2)} y \partial_{21}^{(4)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{10} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)-\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)
\end{aligned}
$$

$$
\begin{aligned}
= & -\frac{1}{5} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)-\frac{1}{2} z_{32} y Z_{31} z \partial_{21}^{(5)} \partial_{32}(v)- \\
& \frac{1}{10} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
(& \left.\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{\mathcal { M } _ { 2 }}}\right)\left(-\frac{1}{10} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{32}(v)\right) \\
= & \sigma_{2}\left(\frac{1}{10} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(4)} \partial_{32}(v)\right)-\frac{1}{10} Z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{1}{10} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(4)} \partial_{32}(v)\right)-\frac{1}{10} Z_{32} y z_{31} z \partial_{21} \partial_{21}^{(4)} \partial_{32}(v) \\
= & -\frac{1}{10} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)} \partial_{32}(v)-\frac{1}{10} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(4)} \partial_{32}(v) \\
= & -\frac{1}{5} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)-\frac{1}{2} Z_{32} y Z_{31} z \partial_{21}^{(5)} \partial_{32}(v)- \\
& \frac{1}{10} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)
\end{aligned}
$$

$\bullet\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32} y Z_{32}^{(2)} y z_{21}^{(7)} x(v)\right)$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{0}$

$$
=\sigma_{2}\left(3 z_{32}^{(3)} y z_{21}^{(7)} x(v)-z_{32} y z_{21}^{(7)} x \partial_{32}^{(2)}(v)-Z_{32} y Z_{21}^{(6)} x \partial_{32} \partial_{31}(v)-\right.
$$

$$
\left.z_{32} y z_{21}^{(5)} x \partial_{31}^{(2)}(v)+Z_{32} y Z_{32}^{(2)} y \partial_{21}^{(7)}(v)\right)
$$

$$
=\frac{3}{30} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\frac{3}{35} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{6}{15} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)-\frac{1}{21} z_{32} y z_{32}^{(2)} y \partial_{21}^{(5)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{1}{15} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)-\frac{1}{10} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)
$$

$$
=-\frac{2}{5} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)-\frac{6}{15} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)-
$$

$$
\frac{1}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{15} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(\frac{1}{15} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(5)} \partial_{32}(v)\right)-\frac{1}{15} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)} \partial_{32}(v)+ \\
& \quad \sigma_{2}\left(\frac{1}{15} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)} \partial_{32}(v)\right)-\frac{1}{15} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(5)} \partial_{32}(v)
\end{aligned}
$$

$$
\begin{aligned}
= & -\frac{1}{15} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)} \partial_{32}(v)-\frac{1}{15} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(5)} \partial_{32}(v) \\
= & -\frac{2}{5} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)-\frac{6}{15} z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{32}(v)- \\
& \frac{1}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32} y Z_{32}^{(2)} y Z_{21}^{(8)} x(v)\right) ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{0}$

$$
\begin{aligned}
= & \sigma_{2}\left(3 Z_{32}^{(3)} y Z_{21}^{(8)} x(v)-Z_{32} y Z_{21}^{(8)} x \partial_{32}^{(2)}(v)-Z_{32} y Z_{21}^{(7)} x \partial_{32} \partial_{31}(v)-\right. \\
& \left.Z_{32} y z_{21}^{(6)} x \partial_{31}^{(2)}(v)+z_{32} y Z_{32}^{(2)} y \partial_{21}^{(8)}(v)\right) \\
= & \frac{3}{45} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{15}{252} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{3}{9} Z_{32} y Z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{1}{28} Z_{32} y Z_{32}^{(2)} y \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)-\frac{1}{15} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v) \\
= & -\frac{2}{21} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)-\frac{1}{3} z_{32} y Z_{31} z \partial_{21}^{(7)} \partial_{32}(v)- \\
& \frac{1}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
(& \left.\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{\mathcal { M } _ { 2 }}}\right)\left(-\frac{1}{21} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{32}(v)\right) \\
= & \sigma_{2}\left(\frac{1}{21} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)} \partial_{32}(v)\right)-\frac{1}{21} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{1}{21} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{32}(v)\right)-\frac{1}{21} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(6)} \partial_{32}(v) \\
= & -\frac{1}{21} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{32}(v)-\frac{1}{21} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(6)} \partial_{32}(v) \\
= & -\frac{2}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)-\frac{1}{3} Z_{32} y Z_{31} z \partial_{21}^{(7)} \partial_{32}(v)- \\
& \frac{1}{21} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y Z_{32}^{(2)} y Z_{21}^{(9)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0}$
$=\sigma_{2}\left(3 Z_{32}^{(3)} y Z_{21}^{(9)} x(v)\right)-Z_{32} y Z_{21}^{(9)} x \partial_{32}^{(2)}(v)-\sigma_{2}\left(Z_{32} y Z_{21}^{(8)} x \partial_{32} \partial_{31}(v)-\right.$

$$
\begin{aligned}
& \left.z_{32} y Z_{21}^{(7)} x \partial_{31}^{(2)}(v)+Z_{32} \mathcal{Y} Z_{32}^{(2)} y \partial_{21}^{(9)}(v)\right) \\
= & \frac{3}{63} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{3}{84} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{1}{28} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)-\frac{1}{21} z_{32} y z_{32}^{(2)} y \partial_{21}^{(5)} \partial_{32}^{(2)}(v) \\
= & 0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y Z_{32}^{(2)} y Z_{21}^{(10)} x(v)\right)$; where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$

$$
\begin{aligned}
= & \sigma_{2}\left(3 Z_{32}^{(3)} y Z_{21}^{(10)} x(v)\right)-Z_{32} y Z_{21}^{(10)} x \partial_{32}^{(2)}(v)-Z_{32} y Z_{21}^{(9)} x \partial_{32} \partial_{31}(v)- \\
& \sigma_{2}\left(-Z_{32} y Z_{21}^{(8)} x \partial_{31}^{(2)}(v)+Z_{32} y Z_{32}^{(2)} y \partial_{21}^{(10)}(v)\right) \\
= & \frac{3}{84} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{1}{28} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v) \\
= & 0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(4)} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{0}$ $=\sigma_{2}\left(Z_{21}^{(4)} x Z_{21} x \partial_{32}^{(2)}(v)+Z_{21}^{(3)} x Z_{21} x \partial_{32}^{(2)} \partial_{31}(v)+Z_{21}^{(2)} x Z_{21} x \partial_{32} \partial_{31}^{(2)}(v)+\right.$ $\left.Z_{21} x Z_{21} x \partial_{31}^{(3)}(v)-5 Z_{32}^{(3)} y Z_{21}^{(5)} x(v)+Z_{32}^{(3)} y Z_{21}^{(4)} x \partial_{21}(v)\right)$

$$
=-\frac{2}{9} z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31}^{(2)}(v)+\frac{7}{18} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)+
$$

$$
\frac{10}{9} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{32}(v)-\frac{1}{2} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)-\frac{4}{3} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{32}(v)-
$$

$$
\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{31}(v)
$$

$$
=-\frac{2}{9} z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31}^{(2)}(v)-\frac{1}{9} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{2}{9} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{32}(v)-\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)-
$$

$$
\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{31}(v)
$$

And

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(5)} x Z_{21} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{0}$

$$
=\sigma_{2}\left(Z_{21}^{(5)} x Z_{21} x \partial_{32}^{(3)}(v)+Z_{21}^{(4)} x Z_{21} x \partial_{32}^{(2)} \partial_{31}(v)+Z_{21}^{(3)} x Z_{21} x \partial_{32} \partial_{31}^{(2)}(v)+\right.
$$

$$
\left.Z_{21}^{(2)} x Z_{21} x \partial_{31}^{(3)}(v)-6 Z_{32}^{(3)} y Z_{21}^{(6)} x(v)+Z_{32}^{(3)} y Z_{21}^{(5)} x \partial_{21}(v)\right)
$$

$$
=-\frac{1}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)+\frac{4}{15} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)+
$$

$$
z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v)-\frac{28}{90} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{7}{90} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)-\frac{10}{9} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v)-
$$

$$
\frac{2}{9} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{31}(v)
$$

$$
=-\frac{1}{9} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-\frac{2}{45} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)-
$$

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{9} Z_{32} \mathcal{y} \mathcal{Z}_{31} z \mathcal{Z}_{21} x \partial_{21}^{(2)} \partial_{31}(v)-\right. \\
& \left.\frac{1}{18} z_{32} y z_{31} z z_{21} x \partial_{21}^{(3)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(\frac{1}{9} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(2)} \partial_{31}(v)\right)-\frac{1}{9} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(2)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{9} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(2)} \partial_{31}(v)\right)-\frac{1}{9} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(2)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{18} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(3)} \partial_{32}(v)\right)-\frac{1}{18} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(3)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{1}{18} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(3)} \partial_{32}(v)\right)-\frac{1}{18} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(3)} \partial_{32}(v) \\
& =-\frac{1}{9} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)-\frac{2}{9} Z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{31}^{(2)}(v)- \\
& \frac{3}{9} z_{32} y Z_{31} z \partial_{21}^{(3)} \partial_{31}(v)-\frac{2}{18} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{18} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)-\frac{4}{18} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{32}(v) \\
& =-\frac{2}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31}^{(2)}(v)-\frac{1}{9} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)- \\
& \frac{2}{9} z_{32} y Z_{31} z \partial_{21}^{(4)} \partial_{32}(v)-\frac{1}{6} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)- \\
& \frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{31}(v)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{9} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v)-\frac{7}{90} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)- \\
& \frac{2}{9} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{31}(v)
\end{aligned}
$$

And

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(4)} x Z_{21}^{(2)} x(v)\right)$; where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{0}$

$$
=\sigma_{2}\left(Z_{21}^{(4)} x Z_{21}^{(2)} x \partial_{32}^{(3)}(v)+Z_{21}^{(3)} x Z_{21}^{(2)} x \partial_{32}^{(2)} \partial_{31}(v)+\right.
$$

$$
Z_{21}^{(2)} x Z_{21}^{(2)} x \partial_{32} \partial_{31}^{(2)}(v)+Z_{21} x Z_{21}^{(2)} x \partial_{31}^{(3)}(v)-15 Z_{32}^{(3)} y Z_{21}^{(6)} x(v)+
$$

$$
\left.z_{32}^{(3)} y z_{21}^{(4)} x \partial_{21}^{(2)}(v)\right)
$$

$$
=-\frac{5}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)+\frac{2}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)+
$$

$$
\frac{5}{2} z_{32} y Z_{31} z \partial_{21}^{(5)} \partial_{32}(v)+\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-
$$

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{18} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(3)} \partial_{31}(v)-\right. \\
& \left.\frac{1}{45} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(\frac{1}{18} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(3)} \partial_{31}(v)\right)-\frac{1}{18} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(3)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{18} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(3)} \partial_{31}(v)\right)-\frac{1}{18} Z_{32} y z_{31} z \partial_{21} \partial_{21}^{(3)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{45} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(4)} \partial_{32}(v)\right)-\frac{1}{45} Z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{1}{45} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(4)} \partial_{32}(v)\right)-\frac{1}{45} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(4)} \partial_{32}(v) \\
& =-\frac{1}{18} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)-\frac{2}{18} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)- \\
& \frac{4}{18} Z_{32} y Z_{31} z \partial_{21}^{(4)} \partial_{31}(v)-\frac{2}{45} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)-\frac{5}{45} Z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v) \\
& =-\frac{1}{9} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-\frac{2}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{9} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v)-\frac{7}{90} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)- \\
& \frac{2}{9} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{31}(v)
\end{aligned}
$$

$$
\begin{aligned}
& Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)-\frac{1}{2} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)- \\
& \frac{1}{6} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-\frac{10}{3} z_{32} y Z_{31} z \partial_{21}^{(5)} \partial_{32}(v)- \\
& \frac{4}{3} z_{32} y Z_{31} z \partial_{21}^{(4)} \partial_{31}(v) \\
& =-\frac{2}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)- \\
& \frac{5}{6} Z_{32} y Z_{31} z \partial_{21}^{(5)} \partial_{32}(v)-\frac{1}{2} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)- \\
& \frac{3}{4} z_{32} y Z_{31} z \partial_{21}^{(4)} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{3} Z_{32} y \mathcal{Z}_{31} z \mathcal{Z}_{21} x \partial_{21}^{(3)} \partial_{31}(v)-\right. \\
& \left.\frac{1}{6} z_{32} y z_{31} z z_{21} x \partial_{21}^{(4)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(\frac{1}{3} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(3)} \partial_{31}(v)\right)-\frac{1}{3} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(3)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{3} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(3)} \partial_{31}(v)\right)-\frac{1}{3} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(3)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{6} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(4)} \partial_{32}(v)\right)-\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{1}{6} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(4)} \partial_{32}(v)\right)-\frac{1}{6} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(4)} \partial_{32}(v) \\
& =-\frac{1}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)-\frac{2}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)- \\
& \frac{4}{3} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{31}(v)-\frac{2}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{6} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)-\frac{5}{6} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v) \\
& =-\frac{2}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-\frac{1}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)- \\
& \frac{5}{6} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v)-\frac{1}{2} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)- \\
& \frac{3}{4} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(6)} x Z_{21} x(v)\right) ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{0}$

$$
=\sigma_{2}\left(Z_{21}^{(6)} x Z_{21} x \partial_{32}^{(3)}(v)+Z_{21}^{(5)} x Z_{21} x \partial_{32}^{(2)} \partial_{31}(v)+Z_{21}^{(4)} x Z_{21} x \partial_{32} \partial_{31}^{(2)}(v)+\right.
$$

$$
\begin{aligned}
& \left.Z_{21}^{(3)} x Z_{21} x \partial_{31}^{(3)}(v)-7 Z_{32}^{(3)} y Z_{21}^{(7)} x(v)+Z_{32}^{(3)} y Z_{21}^{(6)} x \partial_{21}(v)\right) \\
& =-\frac{1}{15} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)+\frac{1}{5} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)+ \\
& \frac{14}{15} z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{32}(v)-\frac{2}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)- \\
& \frac{2}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)-Z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)- \\
& \frac{1}{6} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{31}(v) \\
& =-\frac{1}{15} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\frac{1}{45} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{15} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)-\frac{2}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)- \\
& \frac{1}{6} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{30} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{31}(v)-\right. \\
& \left.\frac{1}{90} z_{32} y z_{31} z z_{21} x \partial_{21}^{(5)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(\frac{1}{30} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(4)} \partial_{31}(v)\right)-\frac{1}{30} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{30} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(4)} \partial_{31}(v)\right)-\frac{1}{30} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(4)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{90} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(5)} \partial_{32}(v)\right)-\frac{1}{90} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{1}{90} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)} \partial_{32}(v)\right)-\frac{1}{90} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(5)} \partial_{32}(v) \\
& =-\frac{1}{30} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)-\frac{2}{30} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)- \\
& \frac{5}{30} Z_{32} y Z_{31} z \partial_{21}^{(5)} \partial_{31}(v)-\frac{2}{90} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{90} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)-\frac{6}{90} Z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{32}(v) \\
& =-\frac{1}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\frac{1}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{15} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)-\frac{2}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)- \\
& \frac{1}{6} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32}^{(3)} y Z_{21}^{(5)} x z_{21}^{(2)} x(v)\right)$; where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{0}$

$$
=\sigma_{2}\left(Z_{21}^{(5)} x Z_{21}^{(2)} x \partial_{32}^{(3)}(v)+Z_{21}^{(4)} x Z_{21}^{(2)} x \partial_{32}^{(2)} \partial_{31}(v)+\right.
$$

$$
Z_{21}^{(3)} x Z_{21}^{(2)} x \partial_{32} \partial_{31}^{(2)}(v)+Z_{21}^{(2)} x Z_{21}^{(2)} x \partial_{31}^{(3)}(v)-21 z_{32}^{(3)} y z_{21}^{(7)} x(v)+
$$

$$
\left.Z_{32}^{(3)} y z_{21}^{(5)} x \partial_{21}^{(2)}(v)\right)
$$

$$
=-\frac{11}{30} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)+\frac{3}{5} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)+
$$

$$
\frac{14}{5} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)-\frac{7}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{14}{45} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)-\frac{7}{90} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-
$$

$$
\frac{10}{3} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)-\frac{10}{9} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{31}(v)
$$

$$
=-\frac{4}{9} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\frac{8}{45} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{8}{15} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)-\frac{14}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)-
$$

$$
\frac{10}{9} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{31}(v)
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{2}{9} Z_{32} \mathcal{y} Z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{31}(v)-\right. \\
& \left.\frac{4}{45} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(\frac{2}{9} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(4)} \partial_{31}(v)\right)-\frac{2}{9} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{2}{9} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(4)} \partial_{31}(v)\right)-\frac{2}{9} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(4)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{4}{45} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(5)} \partial_{32}(v)\right)-\frac{4}{45} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{4}{45} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)} \partial_{32}(v)\right)-\frac{4}{45} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(5)} \partial_{32}(v) \\
& =-\frac{2}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)-\frac{4}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)- \\
& \frac{10}{9} Z_{32} y Z_{31} z \partial_{21}^{(5)} \partial_{31}(v)-\frac{8}{45} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)- \\
& \frac{4}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)-\frac{24}{45} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)
\end{aligned}
$$

$$
\begin{aligned}
= & -\frac{4}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\frac{8}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)- \\
& \frac{8}{15} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)-\frac{14}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)- \\
& \frac{10}{9} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(4)} x Z_{21}^{(3)} x(v)\right) ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{0}$

$$
=\sigma_{2}\left(Z_{21}^{(4)} x Z_{21}^{(3)} x \partial_{32}^{(3)}(v)+Z_{21}^{(3)} x Z_{21}^{(3)} x \partial_{32}^{(2)} \partial_{31}(v)+\right.
$$

$$
z_{21}^{(2)} x z_{21}^{(3)} x \partial_{32} \partial_{31}^{(2)}(v)+z_{21} x Z_{21}^{(3)} x \partial_{31}^{(3)}(v)-35 z_{32}^{(3)} y z_{21}^{(7)} x(v)+
$$

$$
\left.z_{32}^{(3)} y z_{21}^{(4)} x \partial_{21}^{(3)}(v)\right)
$$

$$
=-\frac{5}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)+z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)+
$$

$$
\frac{14}{3} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)-\frac{5}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)-
$$

$$
z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)-\frac{1}{2} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-
$$

$$
\frac{20}{3} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)-\frac{10}{3} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{31}(v)
$$

$$
=-\frac{4}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\frac{2}{3} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)-
$$

$$
2 z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)-z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)-
$$

$$
\frac{10}{3} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{31}(v)
$$

And

$$
\begin{gathered}
\left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M} \mathcal{M}_{2}}\right)\left(-\frac{2}{3} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{31}(v)-\right. \\
\left.\frac{1}{3} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{32}(v)\right) \\
=\sigma_{2}\left(\frac{2}{3} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(4)} \partial_{31}(v)\right)-\frac{2}{3} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)} \partial_{31}(v)+ \\
\sigma_{2}\left(\frac{2}{3} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(4)} \partial_{31}(v)\right)-\frac{2}{3} Z_{32} y z_{31} z \partial_{21} \partial_{21}^{(4)} \partial_{31}(v)+ \\
\sigma_{2}\left(\frac{1}{3} z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(5)} \partial_{32}(v)\right)-\frac{1}{3} Z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)} \partial_{32}(v)+ \\
\sigma_{2}\left(\frac{1}{3} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)} \partial_{32}(v)\right)-\frac{1}{3} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(5)} \partial_{32}(v)
\end{gathered}
$$

$$
\begin{aligned}
= & -\frac{2}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)-\frac{4}{3} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)- \\
& \frac{10}{3} Z_{32} y Z_{31} z \partial_{21}^{(5)} \partial_{31}(v)-\frac{2}{3} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)-2 z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v) \\
= & -\frac{4}{3} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\frac{2}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)- \\
& 2 Z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{32}(v)-Z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)- \\
& \frac{10}{3} z_{32} y Z_{31} z \partial_{21}^{(5)} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(7)} x Z_{21} x(v)\right) ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{0}$

$$
=Z_{21}^{(7)} x Z_{21} x \partial_{32}^{(3)}(v)+\sigma_{2}\left(Z_{21}^{(6)} x Z_{21} x \partial_{32}^{(2)} \partial_{31}(v)+Z_{21}^{(5)} x Z_{21} x \partial_{32} \partial_{31}^{(2)}(v)+\right.
$$

$$
\left.Z_{21}^{(4)} x Z_{21} x \partial_{31}^{(3)}(v)-8 Z_{32}^{(3)} y Z_{21}^{(8)} x(v)+Z_{32}^{(3)} y Z_{21}^{(7)} x \partial_{21}(v)\right)
$$

$$
=-\frac{2}{45} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)+\frac{10}{63} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)+
$$

$$
\frac{8}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{6}{35} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{1}{35} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)-\frac{14}{15} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-
$$

$$
\frac{2}{15} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{31}(v)
$$

$$
=-\frac{2}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{4}{315} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{2}{45} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{1}{35} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)-
$$

$$
\frac{2}{15} z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{31}(v)
$$

And

$$
\begin{gathered}
\left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M} \mathcal{M}_{2}}\right)\left(-\frac{1}{45} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{31}(v)-\right. \\
\left.\frac{2}{315} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{32}(v)\right) \\
=\sigma_{2}\left(\frac{1}{45} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(5)} \partial_{31}(v)\right)-\frac{1}{45} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)} \partial_{31}(v)+ \\
\sigma_{2}\left(\frac{1}{45} Z_{32} y Z_{32} \mathcal{y} \partial_{21}^{(2)} \partial_{21}^{(5)} \partial_{31}(v)\right)-\frac{1}{45} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(5)} \partial_{31}(v)+
\end{gathered}
$$

$$
\begin{aligned}
& \sigma_{2}\left(\frac{2}{315} Z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)} \partial_{32}(v)\right)-\frac{2}{315} z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{2}{315} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{32}(v)\right)-\frac{2}{315} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(6)} \partial_{32}(v) \\
= & -\frac{1}{45} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)-\frac{2}{45} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)- \\
& \frac{2}{15} Z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{31}(v)-\frac{4}{315} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{2}{315} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)-\frac{14}{315} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v) \\
= & -\frac{2}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{4}{315} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{2}{45} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{1}{35} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)- \\
& \frac{2}{15} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(6)} x Z_{21}^{(2)} x(v)\right)$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{0}$

$$
=Z_{21}^{(6)} x Z_{21}^{(2)} x \partial_{32}^{(3)}(v)+\sigma_{2}\left(Z_{21}^{(5)} x Z_{21}^{(2)} x \partial_{32}^{(2)} \partial_{31}(v)+\right.
$$

$$
Z_{21}^{(4)} x Z_{21}^{(2)} x \partial_{32} \partial_{31}^{(2)}(v)+Z_{21}^{(3)} x Z_{21}^{(2)} x \partial_{31}^{(3)}(v)-28 Z_{32}^{(3)} y Z_{21}^{(8)} x(v)+
$$

$$
\left.z_{32}^{(3)} y z_{21}^{(6)} x \partial_{21}^{(2)}(v)\right)
$$

$$
=-\frac{13}{45} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)+\frac{5}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)+
$$

$$
\frac{28}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{2}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{2}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)-\frac{2}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-
$$

$$
\frac{7}{2} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{31}(v)
$$

$$
=-\frac{1}{3} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{1}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{7}{18} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{2}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)-
$$

$$
z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{31}(v)
$$

And

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(5)} x Z_{21}^{(3)} x(v)\right) ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{0}$

$$
=Z_{21}^{(5)} x Z_{21}^{(3)} x \partial_{32}^{(3)}(v)+\sigma_{2}\left(Z_{21}^{(4)} x Z_{21}^{(3)} x \partial_{32}^{(2)} \partial_{31}(v)+\right.
$$

$$
Z_{21}^{(3)} x Z_{21}^{(3)} x \partial_{32} \partial_{31}^{(2)}(v)+Z_{21}^{(2)} x Z_{21}^{(3)} x \partial_{31}^{(3)}(v)-56 Z_{32}^{(3)} y Z_{21}^{(8)} x(v)+
$$

$$
\left.z_{32}^{(3)} y z_{21}^{(5)} x \partial_{21}^{(3)}(v)\right)
$$

$$
=-\frac{4}{5} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)+\frac{10}{9} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)+
$$

$$
\frac{56}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{14}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{7}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)-\frac{28}{90} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-
$$

$$
\frac{70}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{10}{3} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{31}(v)
$$

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{6} Z_{32} \mathcal{y} Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{31}(v)-\right. \\
& \left.\frac{1}{18} z_{32} y z_{31} z z_{21} x \partial_{21}^{(6)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(\frac{1}{6} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(5)} \partial_{31}(v)\right)-\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{6} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)} \partial_{31}(v)\right)-\frac{1}{6} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(5)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{18} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)} \partial_{32}(v)\right)-\frac{1}{18} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{1}{18} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{32}(v)\right)-\frac{1}{18} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(6)} \partial_{32}(v) \\
& =-\frac{1}{6} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)-\frac{1}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)- \\
& z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{31}(v)-\frac{1}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{18} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)-\frac{7}{18} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v) \\
& =-\frac{1}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{1}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{7}{18} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{2}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)- \\
& z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{31}(v)
\end{aligned}
$$

$$
\begin{aligned}
= & -\frac{10}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{4}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{14}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{7}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)- \\
& \frac{10}{3} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{5}{9} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{31}(v)-\right. \\
& \left.\frac{2}{9} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(\frac{5}{9} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(5)} \partial_{31}(v)\right)-\frac{5}{9} z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{5}{9} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)} \partial_{31}(v)\right)-\frac{5}{9} z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(5)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{2}{9} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)} \partial_{32}(v)\right)-\frac{2}{9} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{2}{9} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{32}(v)\right)-\frac{2}{9} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(6)} \partial_{32}(v) \\
& =-\frac{5}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)-\frac{10}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)- \\
& \frac{10}{3} Z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{31}(v)-\frac{4}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{2}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)-\frac{14}{9} Z_{32} y Z_{31} z \partial_{21}^{(7)} \partial_{32}(v) \\
& =-\frac{10}{9} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{4}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{14}{9} z_{32} y Z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{7}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)- \\
& \frac{10}{3} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(4)} x Z_{21}^{(4)} x(v)\right)$; where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{0}$

$$
\begin{aligned}
= & Z_{21}^{(4)} x Z_{21}^{(4)} x \partial_{32}^{(3)}(v)+\sigma_{2}\left(Z_{21}^{(3)} x Z_{21}^{(4)} x \partial_{32}^{(2)} \partial_{31}(v)+\right. \\
& Z_{21}^{(2)} x Z_{21}^{(4)} x \partial_{32} \partial_{31}^{(2)}(v)+Z_{21} x Z_{21}^{(4)} x \partial_{31}^{(3)}(v)-70 Z_{32}^{(3)} y Z_{21}^{(8)} x(v)+ \\
& \left.z_{32}^{(3)} y Z_{21}^{(4)} x \partial_{21}^{(4)}(v)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & -\frac{11}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)+\frac{25}{18} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)+ \\
& \frac{70}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{5}{2} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{5}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)-z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)- \\
& \frac{35}{3} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{20}{3} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{31}(v) \\
= & -\frac{20}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{10}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{35}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{5}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)- \\
& \frac{20}{3} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{10}{9} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{31}(v)-\right. \\
& \left.\frac{5}{9} z_{32} y z_{31} z z_{21} x \partial_{21}^{(6)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(\frac{10}{9} z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(5)} \partial_{31}(v)\right)-\frac{10}{9} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{10}{9} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)} \partial_{31}(v)\right)-\frac{10}{9} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(5)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{5}{9} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)} \partial_{32}(v)\right)-\frac{5}{9} Z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{5}{9} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{32}(v)\right)-\frac{5}{9} z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(6)} \partial_{32}(v) \\
& =-\frac{10}{9} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)-\frac{20}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)- \\
& \frac{20}{3} Z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{31}(v)-\frac{10}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{5}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)-\frac{35}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v) \\
& =-\frac{20}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{10}{9} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{35}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)-\frac{5}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)- \\
& \frac{20}{3} Z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{31}(v)
\end{aligned}
$$

$$
\text { - } \begin{aligned}
& \left(\delta_{M_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{M_{3} \mathcal{M}_{2}}\right)\left(z_{32}^{(3)} y z_{21}^{(8)} x z_{21} x(v)\right) ; \text { where } v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0} \\
= & z_{21}^{(8)} x z_{21} x \partial_{32}^{(3)}(v)+z_{21}^{(7)} x z_{21} x \partial_{32}^{(2)} \partial_{31}(v)+\sigma_{2}\left(z_{21}^{(6)} x z_{21} x \partial_{32} \partial_{31}^{(2)}(v)+\right. \\
& \left.z_{21}^{(5)} x z_{21} x \partial_{31}^{(3)}(v)-9 z_{32}^{(3)} y z_{21}^{(9)} x(v)+z_{32}^{(3)} y z_{21}^{(8)} x \partial_{21}(v)\right) \\
= & -\frac{2}{63} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{3}{28} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{5}{252} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)-\frac{8}{9} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{32}(v)- \\
& \frac{1}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v) \\
= & -\frac{2}{63} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{8}{63} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{8}{9} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{32}(v)-\frac{1}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{63} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{31}(v)-\right. \\
& \left.\frac{1}{9} z_{32} y z_{31} z z_{21} x \partial_{21}^{(7)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(\frac{1}{63} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)} \partial_{31}(v)\right)-\frac{1}{63} Z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{63} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{31}(v)\right)-\frac{1}{63} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(6)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{9} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)} \partial_{32}(v)\right)-\frac{1}{9} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(7)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{1}{9} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(7)} \partial_{32}(v)\right)-\frac{1}{9} z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(7)} \partial_{32}(v) \\
& =-\frac{1}{63} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)-\frac{2}{63} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)- \\
& \frac{1}{9} z_{32} y Z_{31} z \partial_{21}^{(7)} \partial_{31}(v)-\frac{1}{9} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{8}{9} z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{32}(v) \\
& =-\frac{2}{63} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{8}{63} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{8}{9} z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{32}(v)-\frac{1}{9} z_{32} y Z_{31} z \partial_{21}^{(7)} \partial_{31}(v)
\end{aligned}
$$

$$
\begin{aligned}
\bullet & \left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(7)} x Z_{21}^{(2)} x(v)\right) ; \text { where } v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0} \\
= & Z_{21}^{(7)} x Z_{21}^{(2)} x \partial_{32}^{(3)}(v)+Z_{21}^{(6)} x Z_{21}^{(2)} x \partial_{32}^{(2)} \partial_{31}(v)+\sigma_{2}\left(Z_{21}^{(5)} x Z_{21}^{(2)} x \partial_{32} \partial_{31}^{(2)}(v)+\right. \\
& \left.Z_{21}^{(4)} x Z_{21}^{(2)} x \partial_{31}^{(3)}(v)-36 Z_{32}^{(3)} y Z_{21}^{(9)} x(v)+Z_{32}^{(3)} y Z_{21}^{(7)} x \partial_{21}^{(2)}(v)\right) \\
= & -\frac{5}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{3}{7} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{6}{35} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)-\frac{1}{35} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)- \\
& \frac{56}{15} Z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{32}(v)-\frac{14}{15} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v) \\
= & -\frac{4}{15} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{3}{5} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{56}{15} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{32}(v)-\frac{14}{15} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{2}{15} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{31}(v)-\right. \\
& \left.\frac{7}{15} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(\frac{2}{15} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)} \partial_{31}(v)\right)-\frac{2}{15} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{2}{15} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{31}(v)\right)-\frac{2}{15} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(6)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{7}{15} z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)} \partial_{32}(v)\right)-\frac{7}{15} Z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(7)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{7}{15} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(7)} \partial_{32}(v)\right)-\frac{7}{15} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(7)} \partial_{32}(v) \\
& =-\frac{2}{15} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)-\frac{4}{15} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)- \\
& \frac{14}{15} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v)-\frac{7}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{56}{15} z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{32}(v) \\
& =-\frac{4}{15} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{3}{5} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{56}{15} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{32}(v)-\frac{14}{15} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - }\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(6)} x Z_{21}^{(3)} x(v)\right) \text {; where } v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0} \\
& =Z_{21}^{(6)} x Z_{21}^{(3)} x \partial_{32}^{(3)}(v)+Z_{21}^{(5)} x Z_{21}^{(3)} x \partial_{32}^{(2)} \partial_{31}(v)+\sigma_{2}\left(Z_{21}^{(4)} x Z_{21}^{(3)} x \partial_{32} \partial_{31}^{(2)}(v)+\right. \\
& \left.Z_{21}^{(3)} x Z_{21}^{(3)} x \partial_{31}^{(3)}(v)-84 Z_{32}^{(3)} y Z_{21}^{(9)} x(v)+Z_{32}^{(3)} y Z_{21}^{(6)} x \partial_{21}^{(3)}(v)\right) \\
& =-\frac{7}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{2}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)-\frac{2}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)- \\
& \frac{28}{3} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{32}(v)-\frac{7}{2} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v) \\
& =-Z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{5}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{28}{3} z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{32}(v)-\frac{7}{2} Z_{32} y Z_{31} z \partial_{21}^{(7)} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{2} z_{32} y z_{31} z z_{21} x \partial_{21}^{(6)} \partial_{31}(v)-\right. \\
& \left.\quad \frac{7}{6} z_{32} y z_{31} z z_{21} x \partial_{21}^{(7)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(\frac{1}{2} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)} \partial_{31}(v)\right)-\frac{1}{2} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{2} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{31}(v)\right)-\frac{1}{2} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(6)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{7}{6} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)} \partial_{32}(v)\right)-\frac{7}{6} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(7)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{7}{6} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(7)} \partial_{32}(v)\right)-\frac{7}{6} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(7)} \partial_{32}(v) \\
& =-\frac{1}{2} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)-Z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)- \\
& \frac{7}{2} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v)-\frac{7}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{28}{3} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{32}(v) \\
& = \\
& -Z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{5}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \\
& \frac{28}{3} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{32}(v)-\frac{7}{2} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v)
\end{aligned}
$$

$$
\begin{aligned}
\bullet & \left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(5)} x Z_{21}^{(4)} x(v)\right) ; \text { where } v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0} \\
= & Z_{21}^{(5)} x Z_{21}^{(4)} x \partial_{32}^{(3)}(v)+Z_{21}^{(4)} x Z_{21}^{(4)} x \partial_{32}^{(2)} \partial_{31}(v)+\sigma_{2}\left(Z_{21}^{(3)} x Z_{21}^{(4)} x \partial_{32} \partial_{31}^{(2)}(v)+\right. \\
& \left.Z_{21}^{(2)} x Z_{21}^{(4)} x \partial_{31}^{(3)}(v)-12 Z_{32}^{(3)} y Z_{21}^{(9)} x(v)+Z_{32}^{(3)} y Z_{21}^{(5)} x \partial_{21}^{(4)}(v)\right) \\
= & -\frac{13}{9} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{3}{2} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{14}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)-\frac{7}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)- \\
& \frac{140}{9} Z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{32}(v)-\frac{70}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v) \\
= & -\frac{20}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{55}{18} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{140}{9} Z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{32}(v)-\frac{70}{9} Z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{10}{9} Z_{32} \mathcal{y} Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{31}(v)-\right. \\
& \left.\frac{35}{18} z_{32} y z_{31} z z_{21} x \partial_{21}^{(7)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(\frac{10}{9} z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)} \partial_{31}(v)\right)-\frac{10}{9} z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{10}{9} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{31}(v)\right)-\frac{10}{9} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(6)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{35}{18} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)} \partial_{32}(v)\right)-\frac{35}{18} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(7)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{35}{18} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(7)} \partial_{32}(v)\right)-\frac{35}{18} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(7)} \partial_{32}(v) \\
& =-\frac{10}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)-\frac{20}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)- \\
& \frac{70}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v)-\frac{35}{18} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{140}{9} Z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{32}(v) \\
& =-\frac{20}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{55}{18} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{140}{9} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{32}(v)-\frac{70}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v)
\end{aligned}
$$

$$
\begin{aligned}
\bullet & \left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(4)} x Z_{21}^{(5)} x(v)\right) ; \text { where } v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0} \\
= & Z_{21}^{(4)} x Z_{21}^{(5)} x \partial_{32}^{(3)}(v)+Z_{21}^{(3)} x Z_{21}^{(5)} x \partial_{32}^{(2)} \partial_{31}(v)+\sigma_{2}\left(Z_{21}^{(2)} x Z_{21}^{(5)} x \partial_{32} \partial_{31}^{(2)}(v)+\right. \\
& \left.Z_{21} x Z_{21}^{(5)} x \partial_{31}^{(3)}(v)-126 Z_{32}^{(3)} y Z_{21}^{(9)} x(v)+Z_{32}^{(3)} y Z_{21}^{(4)} x \partial_{21}^{(5)}(v)\right) \\
= & -\frac{5}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-\frac{3}{2} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{5}{2} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)-\frac{5}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)- \\
& \frac{56}{3} Z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{32}(v)-\frac{35}{3} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v) \\
= & -\frac{10}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-4 Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{56}{3} Z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{32}(v)-\frac{35}{3} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{5}{3} Z_{32} \mathcal{y} \mathcal{Z}_{31} z \mathcal{Z}_{21} x \partial_{21}^{(6)} \partial_{31}(v)-\right. \\
& \left.\frac{7}{3} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(\frac{5}{3} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)} \partial_{31}(v)\right)-\frac{5}{3} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{5}{3} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{31}(v)\right)-\frac{5}{3} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(6)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{7}{3} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)} \partial_{32}(v)\right)-\frac{7}{3} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(7)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{7}{3} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(7)} \partial_{32}(v)\right)-\frac{7}{3} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(7)} \partial_{32}(v) \\
& =-\frac{5}{3} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)-\frac{10}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)- \\
& \frac{35}{3} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v)-\frac{7}{3} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{56}{3} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{32}(v) \\
& =-\frac{10}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)-4 Z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)- \\
& \frac{56}{3} z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{32}(v)-\frac{35}{3} Z_{32} y Z_{31} z \partial_{21}^{(7)} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(9)} x Z_{21} x(v)\right)$; where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$

$$
\begin{aligned}
= & z_{21}^{(9)} x z_{21} x \partial_{32}^{(3)}(v)+z_{21}^{(8)} x z_{21} x \partial_{32}^{(2)} \partial_{31}(v)+z_{21}^{(7)} x z_{21} x \partial_{32} \partial_{31}^{(2)}(v)+ \\
& \sigma_{2}\left(z_{21}^{(6)} x z_{21} x \partial_{31}^{(3)}(v)-10 z_{32}^{(3)} y z_{21}^{(10)} x(v)+Z_{32}^{(3)} y z_{21}^{(9)} x \partial_{21}(v)\right) \\
= & -\frac{1}{42} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)+\frac{1}{84} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)+ \\
& \frac{1}{84} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31} \partial_{31}(v) \\
= & 0
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(8)} x Z_{21}^{(2)} x(v)\right)$; where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$ $=z_{21}^{(8)} x z_{21}^{(2)} x \partial_{32}^{(3)}(v)+Z_{21}^{(7)} x z_{21}^{(2)} x \partial_{32}^{(2)} \partial_{31}(v)+Z_{21}^{(6)} x z_{21}^{(2)} x \partial_{32} \partial_{31}^{(2)}(v)+$ $\sigma_{2}\left(Z_{21}^{(5)} x Z_{21}^{(2)} x \partial_{31}^{(3)}(v)-45 z_{32}^{(3)} y z_{21}^{(10)} x(v)+Z_{32}^{(3)} y z_{21}^{(8)} x \partial_{21}^{(2)}(v)\right)$ $=-\frac{17}{84} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{5}{252} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-$ $\frac{1}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{21} \partial_{31}(v)$ $=-\frac{2}{9} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{8}{9} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{31}(v)$
And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{1}{9} Z_{32} y \mathcal{Z}_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{31}(v)\right) \\
& =\sigma_{2}\left(\frac{1}{9} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)} \partial_{31}(v)\right)-\frac{1}{9} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(7)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{9} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(7)} \partial_{31}(v)\right)-\frac{1}{9} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(7)} \partial_{31}(v) \\
& =-\frac{2}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{8}{9} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{31}(v) \\
& \text { - }\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(7)} x Z_{21}^{(3)} x(v)\right) \text {; where } v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0} \\
& =Z_{21}^{(7)} x Z_{21}^{(3)} x \partial_{32}^{(3)}(v)+Z_{21}^{(6)} x z_{21}^{(3)} x \partial_{32}^{(2)} \partial_{31}(v)+Z_{21}^{(5)} x Z_{21}^{(3)} x \partial_{32} \partial_{31}^{(2)}(v)+ \\
& \sigma_{2}\left(z_{21}^{(4)} x z_{21}^{(3)} x \partial_{31}^{(3)}(v)-120 z_{32}^{(3)} y z_{21}^{(10)} x(v)+z_{32}^{(3)} y z_{21}^{(7)} x \partial_{21}^{(3)}(v)\right) \\
& =-\frac{16}{21} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{1}{35} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{21} \partial_{31}^{(2)}(v)-
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{15} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{21}^{(2)} \partial_{31}(v) \\
= & -\frac{98}{105} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{56}{15} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
&\left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{\mathcal { M } _ { 2 }}}\right)\left(-\frac{7}{15} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{31}(v)\right) \\
&= \sigma_{2}\left(\frac{7}{15} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)} \partial_{31}(v)\right)-\frac{7}{15} Z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(7)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{7}{15} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(7)} \partial_{31}(v)\right)-\frac{7}{15} z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(7)} \partial_{31}(v) \\
&=-\frac{98}{105} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{56}{15} z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(6)} x Z_{21}^{(4)} x(v)\right) ;$ where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$

$$
=Z_{21}^{(6)} x Z_{21}^{(4)} x \partial_{32}^{(3)}(v)+Z_{21}^{(5)} x Z_{21}^{(4)} x \partial_{32}^{(2)} \partial_{31}(v)+Z_{21}^{(4)} x Z_{21}^{(4)} x \partial_{32} \partial_{31}^{(2)}(v)+
$$

$$
\sigma_{2}\left(Z_{21}^{(3)} x Z_{21}^{(4)} x \partial_{31}^{(3)}(v)-210 Z_{32}^{(3)} y Z_{21}^{(10)} x(v)+Z_{32}^{(3)} y z_{21}^{(6)} x \partial_{21}^{(4)}(v)\right)
$$

$$
=-\frac{5}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{2}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-
$$

$$
\frac{1}{6} z_{32} y Z_{31} z \partial_{21}^{(5)} \partial_{21}^{(3)} \partial_{31}(v)
$$

$$
=-\frac{7}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{28}{3} Z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{31}(v)
$$

And

$$
\begin{aligned}
&\left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{7}{6} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{31}(v)\right) \\
&= \sigma_{2}\left(\frac{7}{6} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)} \partial_{31}(v)\right)-\frac{7}{6} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(7)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{7}{6} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(7)} \partial_{31}(v)\right)-\frac{7}{6} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(7)} \partial_{31}(v) \\
&=-\frac{7}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{28}{3} z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(5)} x Z_{21}^{(5)} x(v)\right) ;$ where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$
$=Z_{21}^{(5)} x Z_{21}^{(5)} x \partial_{32}^{(3)}(v)+Z_{21}^{(4)} x Z_{21}^{(5)} x \partial_{32}^{(2)} \partial_{31}(v)+Z_{21}^{(3)} x Z_{21}^{(5)} x \partial_{32} \partial_{31}^{(2)}(v)+$

$$
\begin{aligned}
& \sigma_{2}\left(z_{21}^{(2)} x z_{21}^{(5)} x \partial_{31}^{(3)}(v)-252 z_{32}^{(3)} y z_{21}^{(10)} x(v)+Z_{32}^{(3)} y z_{21}^{(5)} x \partial_{21}^{(5)}(v)\right) \\
= & -\frac{7}{3} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{7}{90} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{21}^{(3)} \partial_{31}^{(2)}(v)- \\
& \frac{2}{9} z_{32} y Z_{31} z \partial_{21}^{(4)} \partial_{21}^{(4)} \partial_{31}(v) \\
= & -\frac{35}{9} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{140}{9} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{\mathcal { M } _ { 2 }}}\right)\left(-\frac{35}{18} z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{31}(v)\right) \\
& =\sigma_{2}\left(\frac{35}{18} z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)} \partial_{31}(v)\right)-\frac{35}{18} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(7)} \partial_{31}(v)+ \\
& \quad \sigma_{2}\left(\frac{35}{18} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(7)} \partial_{31}(v)\right)-\frac{35}{18} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(7)} \partial_{31}(v) \\
& =-\frac{35}{9} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{140}{9} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(3)} y Z_{21}^{(4)} x Z_{21}^{(6)} x(v)\right)$; where $v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0}$

$$
\begin{aligned}
= & Z_{21}^{(4)} x Z_{21}^{(6)} x \partial_{32}^{(3)}(v)+Z_{21}^{(3)} x Z_{21}^{(6)} x \partial_{32}^{(2)} \partial_{31}(v)+Z_{21}^{(2)} x Z_{21}^{(6)} x \partial_{32} \partial_{31}^{(2)}(v)+ \\
& \sigma_{2}\left(Z_{21} x Z_{21}^{(6)} x \partial_{31}^{(3)}(v)-210 Z_{32}^{(3)} y Z_{21}^{(10)} x(v)+Z_{32}^{(3)} y Z_{21}^{(4)} x \partial_{21}^{(6)}(v)\right) \\
= & -\frac{13}{6} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{1}{6} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{21}^{(4)} \partial_{31}^{(2)}(v)- \\
& \frac{1}{3} Z_{32} y Z_{31} z \partial_{21}^{(3)} \partial_{21}^{(5)} \partial_{31}(v) \\
= & -\frac{14}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{56}{3} Z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
&\left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(-\frac{7}{3} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(7)} \partial_{31}(v)\right) \\
&= \sigma_{2}\left(\frac{7}{3} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)} \partial_{31}(v)\right)-\frac{7}{3} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(7)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{7}{3} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(7)} \partial_{31}(v)\right)-\frac{7}{3} z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(7)} \partial_{31}(v) \\
&=-\frac{14}{3} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)-\frac{56}{3} z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32} y \mathcal{Z}_{31} z Z_{21}^{(2)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{11} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{1}$

$$
\begin{aligned}
= & \sigma_{2}\left(z_{32}^{(2)} y z_{21}^{(3)} x(v)-z_{21} x z_{21}^{(2)} x \partial_{32}^{(2)}(v)+z_{32} y z_{21}^{(3)} x \partial_{32}(v)-\right. \\
& \left.z_{32} y z_{32} y \partial_{21}^{(3)}(v)\right)+z_{32} y z_{31} z \partial_{21}^{(2)}(v) \\
= & \frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{31}(v)-\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(2)}(v)+\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{32}(v)+ \\
& z_{32} y z_{31} z \partial_{21}^{(2)}(v) \\
= & \frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{31}(v)+\frac{2}{3} z_{32} y z_{31} z \partial_{21}^{(2)}(v)+\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{32}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
&\left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{3} z_{32} y z_{31} z z_{21} x \partial_{21}(v)\right) \\
&= \sigma_{2}\left(-\frac{1}{3} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}(v)\right)+\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}(v)- \\
& \sigma_{2}\left(\frac{1}{3} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}(v)\right)+\frac{1}{3} z_{32} y z_{31} z \partial_{21} \partial_{21}(v) \\
&= \frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{31}(v)+\frac{2}{3} z_{32} y z_{31} z \partial_{21}^{(2)}(v)+\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{32}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(\mathcal{Z}_{32} y \mathcal{Z}_{31} z Z_{21}^{(3)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{12} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{1}$

$$
=\sigma_{2}\left(2 z_{32}^{(2)} y z_{21}^{(4)} x(v)-z_{21} x z_{21}^{(3)} x \partial_{32}^{(2)}(v)+z_{32} y z_{21}^{(4)} x \partial_{32}(v)-\right.
$$

$$
\left.z_{32} y z_{32} y \partial_{21}^{(4)}(v)\right)+Z_{32} y z_{31} z \partial_{21}^{(3)}(v)
$$

$$
=\frac{2}{12} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{31}(v)-\frac{2}{4} z_{32} y z_{31} z \partial_{21}^{(3)}(v)+\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}(v)+
$$

$$
Z_{32} y Z_{31} z \partial_{21}^{(3)}(v)
$$

$$
=\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{31}(v)+\frac{1}{2} z_{32} y z_{31} z \partial_{21}^{(3)}(v)+\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}(v)
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{6} z_{32} y z_{31} z z_{21} x \partial_{21}^{(2)}(v)\right) \\
& =\sigma_{2}\left(-\frac{1}{6} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(2)}(v)\right)+\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(2)}(v)- \\
& \quad \sigma_{2}\left(\frac{1}{6} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(2)}(v)\right)+\frac{1}{6} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(2)}(v)
\end{aligned}
$$

$$
=\frac{1}{6} z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31}(v)+\frac{1}{2} z_{32} y z_{31} z \partial_{21}^{(3)}(v)+\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}(v)
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y Z_{31} z Z_{21}^{(4)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{1}$

$$
=\sigma_{2}\left(3 Z_{32}^{(2)} y Z_{21}^{(5)} x(v)-Z_{21} x Z_{21}^{(4)} x \partial_{32}^{(2)}(v)+Z_{32} y Z_{21}^{(5)} x \partial_{32}(v)-\right.
$$

$$
\left.z_{32} y z_{32} y \partial_{21}^{(5)}(v)\right)+z_{32} y z_{31} z \partial_{21}^{(4)}(v)
$$

$$
=\frac{3}{30} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}(v)-\frac{3}{5} z_{32} y Z_{31} z \partial_{21}^{(4)}(v)+\frac{1}{10} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}(v)+
$$

$$
z_{32} y z_{31} z \partial_{21}^{(4)}(v)
$$

$$
=\frac{1}{10} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}(v)+\frac{2}{5} z_{32} y z_{31} z \partial_{21}^{(4)}(v)+\frac{1}{10} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}(v)
$$

And

$$
\begin{aligned}
&\left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{10} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(3)}(v)\right) \\
&= \sigma_{2}\left(-\frac{1}{10} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(3)}(v)\right)+\frac{1}{10} Z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(3)}(v)- \\
& \sigma_{2}\left(\frac{1}{10} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(3)}(v)\right)+\frac{1}{10} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(3)}(v) \\
&= \frac{1}{10} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}(v)+\frac{2}{5} Z_{32} y Z_{31} z \partial_{21}^{(4)}(v)+\frac{1}{10} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} \mathcal{y} Z_{31} z Z_{21}^{(5)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{1}$

$$
=\sigma_{2}\left(4 Z_{32}^{(2)} y z_{21}^{(6)} x(v)-Z_{21} x Z_{21}^{(5)} x \partial_{32}^{(2)}(v)+z_{32} y Z_{21}^{(6)} x \partial_{32}(v)-\right.
$$

$$
\left.z_{32} y z_{32} y \partial_{21}^{(6)}(v)\right)+Z_{32} y z_{31} z \partial_{21}^{(5)}(v)
$$

$$
=\frac{4}{60} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}(v)-\frac{4}{6} Z_{32} y Z_{31} z \partial_{21}^{(5)}(v)+\frac{1}{15} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}(v)+
$$

$$
z_{32} y z_{31} z \partial_{21}^{(5)}(v)
$$

$$
=\frac{1}{15} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}(v)+\frac{1}{3} Z_{32} y Z_{31} z \partial_{21}^{(5)}(v)+\frac{1}{15} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}(v)
$$

And

$$
\begin{aligned}
&\left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{15} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)}(v)\right) \\
&= \sigma_{2}\left(-\frac{1}{15} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(4)}(v)\right)+\frac{1}{15} Z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)}(v)- \\
& \sigma_{2}\left(\frac{1}{15} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(4)}(v)\right)+\frac{1}{15} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(4)}(v) \\
&= \frac{1}{15} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}(v)+\frac{1}{3} Z_{32} y Z_{31} z \partial_{21}^{(5)}(v)+\frac{1}{15} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y Z_{31} z Z_{21}^{(6)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{15} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{1}$

$$
=\sigma_{2}\left(5 Z_{32}^{(2)} y Z_{21}^{(7)} x(v)-Z_{21} x Z_{21}^{(6)} x \partial_{32}^{(2)}(v)+Z_{32} y Z_{21}^{(7)} x \partial_{32}(v)-\right.
$$

$$
\left.z_{32} y z_{32} y \partial_{21}^{(7)}(v)\right)+z_{32} y z_{31} z \partial_{21}^{(6)}(v)
$$

$$
=\frac{5}{105} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v)-\frac{5}{7} z_{32} y z_{31} z \partial_{21}^{(6)}(v)+
$$

$$
\frac{1}{21} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}(v)+z_{32} y z_{31} z \partial_{21}^{(6)}(v)
$$

$$
=\frac{1}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v)+\frac{2}{7} Z_{32} y Z_{31} z \partial_{21}^{(6)}(v)+\frac{1}{21} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}(v)
$$

And

$$
\begin{aligned}
&\left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{21} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)}(v)\right) \\
&= \sigma_{2}\left(-\frac{1}{21} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(5)}(v)\right)+\frac{1}{21} Z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)}(v)- \\
& \sigma_{2}\left(\frac{1}{21} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)}(v)\right)+\frac{1}{21} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(5)}(v) \\
&= \frac{1}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}(v)+\frac{2}{7} Z_{32} y Z_{31} z \partial_{21}^{(6)}(v)+\frac{1}{21} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} \mathcal{Y} Z_{31} z Z_{21}^{(7)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{16} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{1}$

$$
=\sigma_{2}\left(6 Z_{32}^{(2)} y Z_{21}^{(8)} x(v)\right)-Z_{21} x Z_{21}^{(7)} x \partial_{32}^{(2)}(v)+\sigma_{2}\left(Z_{32} y Z_{21}^{(8)} x \partial_{32}(v)-\right.
$$

$$
\left.z_{32} y z_{32} y \partial_{21}^{(8)}(v)\right)+z_{32} y z_{31} z \partial_{21}^{(7)}(v)
$$

$$
=\frac{6}{168} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)-\frac{6}{8} z_{32} y z_{31} z \partial_{21}^{(7)}(v)+
$$

$$
\begin{aligned}
& \frac{1}{28} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}(v)+z_{32} y Z_{31} z \partial_{21}^{(7)}(v) \\
= & \frac{1}{28} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)+\frac{1}{4} z_{32} y z_{31} z \partial_{21}^{(7)}(v)+\frac{1}{28} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
&\left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{28} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)}(v)\right) \\
&= \sigma_{2}\left(-\frac{1}{28} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)}(v)\right)+\frac{1}{28} Z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)}(v)- \\
& \sigma_{2}\left(\frac{1}{28} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)}(v)\right)+\frac{1}{28} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(6)}(v) \\
&= \frac{1}{28} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}(v)+\frac{1}{4} Z_{32} y Z_{31} z \partial_{21}^{(7)}(v)+\frac{1}{28} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} \mathcal{y} Z_{31} z Z_{21}^{(8)} x(v)\right) \quad ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{1}$

$$
\begin{aligned}
= & \sigma_{2}\left(7 Z_{32}^{(2)} y Z_{21}^{(9)} x(v)\right)-Z_{21} x Z_{21}^{(8)} x \partial_{32}^{(2)}(v)+Z_{32} y Z_{21}^{(9)} x \partial_{32}(v)- \\
& \sigma_{2}\left(Z_{32} y Z_{32} y \partial_{21}^{(9)}(v)\right)+Z_{32} y Z_{31} z \partial_{21}^{(8)}(v) \\
= & \frac{7}{252} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)-\frac{7}{9} z_{32} y z_{31} z \partial_{21}^{(8)}(v)+Z_{32} y Z_{31} z \partial_{21}^{(8)}(v) \\
= & \frac{1}{36} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)+\frac{2}{9} Z_{32} y Z_{31} z \partial_{21}^{(8)}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
&\left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{36} Z_{32} y Z_{31} z \mathcal{Z}_{21} x \partial_{21}^{(7)}(v)\right) \\
&= \sigma_{2}\left(-\frac{1}{36} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)}(v)\right)+\frac{1}{36} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(7)}(v)- \\
& \sigma_{2}\left(\frac{1}{36} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(7)}(v)\right)+\frac{1}{36} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(7)}(v) \\
&= \frac{1}{36} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}(v)+\frac{2}{9} Z_{32} y Z_{31} z \partial_{21}^{(8)}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32} y Z_{32} y Z_{31} z(v)\right) \quad ;$ where $v \in \mathcal{D}_{9} \otimes \mathcal{D}_{9} \otimes \mathcal{D}_{0}$

$$
=\sigma_{2}\left(2 z_{32}^{(2)} y z_{31} z(v)-2 z_{32} y z_{31} z(v)+z_{32} y z_{32} y \partial_{31}(v)\right)
$$

$$
=0
$$

$$
\begin{aligned}
\bullet & \left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{31} z Z_{21}^{(2)} x(v)\right) ; \text { where } v \in \mathcal{D}_{11} \otimes \mathcal{D}_{7} \otimes \mathcal{D}_{0} \\
= & \sigma_{2}\left(-Z_{21} x Z_{21}^{(2)} x \partial_{32}^{(2)}(v)+Z_{21}^{(2)} x Z_{21}^{(3)} x \partial_{32}(v)+Z_{32}^{(2)} y z_{32} y \partial_{21}^{(3)}(v)+\right. \\
& \left.z_{32} y Z_{31} z \partial_{21}^{(2)}(v)\right) \\
= & \frac{1}{3} Z_{32} y Z_{21}^{(2)} x \partial_{31} \partial_{32}(v)-\frac{1}{3} Z_{32} y Z_{31} z \partial_{21}^{(2)} \partial_{32}(v)+\frac{1}{3} z_{32} y Z_{31} z \partial_{32} \partial_{21}^{(2)}(v) \\
= & \frac{1}{3} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{31}(v)+\frac{1}{3} Z_{32} y Z_{31} z \partial_{21} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
&\left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{3} z_{32} y Z_{31} z Z_{21} x \partial_{31}(v)\right) \\
&= \sigma_{2}\left(-\frac{1}{3} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{31}(v)\right)+\frac{1}{3} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{31}(v)- \\
& \sigma_{2}\left(\frac{1}{3} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{31}(v)\right)+\frac{1}{3} z_{32} y Z_{31} z \partial_{21} \partial_{31}(v) \\
&= \frac{1}{3} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{31}(v)+\frac{1}{3} z_{32} y z_{31} z \partial_{21} \partial_{31}(v)
\end{aligned}
$$

$$
\text { - }\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{31} z Z_{21}^{(3)} x(v)\right) ; \text { where } v \in \mathcal{D}_{12} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{0}
$$

$$
=\sigma_{2}\left(Z_{32}^{(3)} y Z_{21}^{(4)} x(v)-Z_{21} x Z_{21}^{(3)} x \partial_{32}^{(3)}(v)+Z_{32}^{(2)} y z_{21}^{(4)} x \partial_{32}-\right.
$$

$$
\left.z_{32}^{(2)} y z_{32} y \partial_{21}^{(4)}(v)+z_{32}^{(2)} y z_{31} z \partial_{21}^{(3)}(v)\right)
$$

$$
=\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{31}^{(2)}(v)-\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}^{(2)}(v)-\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{32}(v)+
$$

$$
\frac{1}{12} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{31} \partial_{32}(v)-\frac{1}{4} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{32}(v)+
$$

$$
\frac{1}{3} z_{32} y z_{31} z \partial_{32} \partial_{21}^{(3)}(v)
$$

$$
=\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{31}^{(2)}(v)-\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}^{(2)}(v)-\frac{1}{4} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{32}(v)+
$$

$$
\frac{1}{12} z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{32} \partial_{31}(v)+\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(2)} \partial_{31}(v)
$$

And

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{31} z Z_{21}^{(4)} x(v)\right) ;$ where $v \in \mathcal{D}_{13} \otimes \mathcal{D}_{5} \otimes \mathcal{D}_{0}$

$$
=\sigma_{2}\left(2 Z_{32}^{(3)} y Z_{21}^{(5)} x(v)-Z_{21} x Z_{21}^{(4)} x \partial_{32}^{(3)}(v)+Z_{32}^{(2)} y Z_{21}^{(5)} x \partial_{32}-\right.
$$

$$
\left.z_{32}^{(2)} y z_{32} y \partial_{21}^{(5)}(v)+z_{32}^{(2)} y z_{31} z \partial_{21}^{(4)}(v)\right)
$$

$$
=\frac{2}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31}^{(2)}(v)-\frac{14}{90} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{4}{9} z_{32} y Z_{31} z \partial_{21}^{(4)} \partial_{32}(v)+\frac{1}{30} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31} \partial_{32}(v)-
$$

$$
\frac{1}{5} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{32}(v)+\frac{1}{3} z_{32} y z_{31} z \partial_{32} \partial_{21}^{(4)}(v)
$$

$$
=\frac{2}{9} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{31}^{(2)}(v)-\frac{7}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{14}{45} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{32}(v)+\frac{1}{30} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)+
$$

$$
\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{31}(v)
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{6} Z_{32} y Z_{31} z Z_{21} x \partial_{21} \partial_{31}(v)-\right. \\
& \left.\frac{1}{12} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(2)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(-\frac{1}{6} z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21} \partial_{31}(v)\right)+\frac{1}{6} z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21} \partial_{31}(v)- \\
& \sigma_{2}\left(\frac{1}{6} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21} \partial_{31}(v)\right)+\frac{1}{6} z_{32} y z_{31} z \partial_{21} \partial_{21} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{12} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(2)} \partial_{32}(v)\right)-\frac{1}{12} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(2)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{1}{12} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(2)} \partial_{32}(v)\right)-\frac{1}{12} z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(2)} \partial_{32}(v) \\
& =\frac{1}{6} Z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{32} \partial_{31}(v)+\frac{2}{6} z_{32} y z_{21}^{(2)} x \partial_{31}^{(2)}(v)+ \\
& \frac{2}{6} z_{32} y Z_{31} z \partial_{21}^{(2)} \partial_{31}(v)-\frac{2}{12} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{12} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{32} \partial_{31}(v)-\frac{3}{12} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{32}(v) \\
& =\frac{1}{3} z_{32} y z_{21}^{(2)} x \partial_{31}^{(2)}(v)-\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32}^{(2)}(v)-\frac{1}{4} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{32}(v)+ \\
& \frac{1}{12} z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{32} \partial_{31}(v)+\frac{1}{3} Z_{32} y Z_{31} z \partial_{21}^{(2)} \partial_{31}(v)
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{31} z Z_{21}^{(5)} x(v)\right) ;$ where $v \in \mathcal{D}_{14} \otimes \mathcal{D}_{4} \otimes \mathcal{D}_{0}$

$$
=\sigma_{2}\left(3 z_{32}^{(3)} y Z_{21}^{(6)} x(v)-Z_{21} x Z_{21}^{(5)} x \partial_{32}^{(3)}(v)+z_{32}^{(2)} y Z_{21}^{(6)} x \partial_{32}-\right.
$$

$$
\left.z_{32}^{(2)} y z_{32} y \partial_{21}^{(6)}(v)+z_{32}^{(2)} y z_{31} z \partial_{21}^{(5)}(v)\right)
$$

$$
=\frac{3}{18} Z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-\frac{6}{45} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{3}{6} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v)+\frac{1}{60} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31} \partial_{32}(v)-
$$

$$
\frac{1}{6} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v)+\frac{1}{3} z_{32} y z_{31} z \partial_{32} \partial_{21}^{(5)}(v)
$$

$$
=\frac{1}{6} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-\frac{2}{15} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)-
$$

$$
\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v)+\frac{1}{60} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)+
$$

$$
\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{31}(v)
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{9} Z_{32} \mathcal{y} Z_{31} z Z_{21} x \partial_{21}^{(2)} \partial_{31}(v)-\right. \\
& \left.\frac{7}{90} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(3)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(-\frac{1}{9} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(2)} \partial_{31}(v)\right)+\frac{1}{9} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(2)} \partial_{31}(v)- \\
& \sigma_{2}\left(\frac{1}{9} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(2)} \partial_{31}(v)\right)+\frac{1}{9} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(2)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{7}{90} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(3)} \partial_{32}(v)\right)-\frac{7}{90} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(3)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{7}{90} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(3)} \partial_{32}(v)\right)-\frac{7}{90} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(3)} \partial_{32}(v) \\
& =\frac{1}{9} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)+\frac{2}{9} z_{32} y z_{21}^{(2)} x \partial_{21} \partial_{31}^{(2)}(v)+ \\
& \frac{3}{9} Z_{32} y Z_{31} z \partial_{21}^{(3)} \partial_{31}(v)-\frac{14}{90} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)- \\
& \frac{7}{90} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)-\frac{28}{90} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{32}(v) \\
& =\frac{2}{9} Z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{31}^{(2)}(v)-\frac{7}{45} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32}^{(2)}(v)- \\
& \frac{14}{45} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{32}(v)+\frac{1}{30} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{32} \partial_{31}(v)+\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(3)} \partial_{31}(v)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{12} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(3)} \partial_{31}(v)-\right. \\
& \left.\frac{1}{15} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(-\frac{1}{12} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(3)} \partial_{31}(v)\right)+\frac{1}{12} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(3)} \partial_{31}(v)- \\
& \sigma_{2}\left(\frac{1}{12} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(3)} \partial_{31}(v)\right)+\frac{1}{12} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(3)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{1}{15} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(4)} \partial_{32}(v)\right)-\frac{1}{15} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{1}{15} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(4)} \partial_{32}(v)\right)-\frac{1}{15} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(4)} \partial_{32}(v) \\
& =\frac{1}{12} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)+\frac{2}{12} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)+ \\
& \frac{4}{12} Z_{32} y Z_{31} z \partial_{21}^{(4)} \partial_{31}(v)-\frac{2}{15} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)-\frac{5}{15} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v) \\
& =\frac{1}{6} z_{32} y z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{31}^{(2)}(v)-\frac{2}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32}^{(2)}(v)- \\
& \frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{32}(v)+\frac{1}{60} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{32} \partial_{31}(v)+\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(4)} \partial_{31}(v) \\
& \text { - }\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y Z_{31} z Z_{21}^{(6)} x(v)\right) \text {; where } v \in \mathcal{D}_{15} \otimes \mathcal{D}_{3} \otimes \mathcal{D}_{0} \\
& =\sigma_{2}\left(4 z_{32}^{(3)} y z_{21}^{(7)} x(v)-z_{21} x z_{21}^{(6)} x \partial_{32}^{(3)}(v)+z_{32}^{(2)} y z_{21}^{(7)} x \partial_{32}-\right. \\
& \left.z_{32}^{(2)} y z_{32} y \partial_{21}^{(7)}(v)+z_{32}^{(2)} y z_{31} z \partial_{21}^{(6)}(v)\right) \\
& =\frac{4}{30} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\frac{4}{35} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)- \\
& \frac{8}{15} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)+\frac{1}{105} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31} \partial_{32}(v)- \\
& \frac{1}{7} z_{32} y Z_{31} z \partial_{21}^{(6)} \partial_{32}(v)+\frac{1}{3} z_{32} y z_{31} z \partial_{32} \partial_{21}^{(6)}(v) \\
& =\frac{2}{15} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\frac{4}{35} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)- \\
& \frac{12}{35} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)+\frac{1}{105} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)+ \\
& \frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{31}(v)
\end{aligned}
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{15} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{31}(v)-\right. \\
& \left.\frac{2}{35} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(-\frac{1}{15} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(4)} \partial_{31}(v)\right)+\frac{1}{15} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(4)} \partial_{31}(v)- \\
& \sigma_{2}\left(\frac{1}{15} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(4)} \partial_{31}(v)\right)+\frac{1}{15} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(4)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{2}{35} z_{21} x z_{21} x \partial_{32}^{(2)} \partial_{21}^{(5)} \partial_{32}(v)\right)-\frac{2}{35} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{2}{35} Z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)} \partial_{32}(v)\right)-\frac{1}{15} z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(5)} \partial_{32}(v) \\
& =\frac{1}{15} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)+\frac{2}{15} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)+ \\
& \frac{5}{15} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{31}(v)-\frac{4}{35} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)- \\
& \frac{2}{35} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)-\frac{12}{35} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v) \\
& =\frac{2}{15} z_{32} y z_{21}^{(2)} x \partial_{21}^{(3)} \partial_{31}^{(2)}(v)-\frac{4}{35} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32}^{(2)}(v)- \\
& \frac{12}{35} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{32}(v)+\frac{1}{105} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{32} \partial_{31}(v)+\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(5)} \partial_{31}(v) \\
& \text { - }\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(z_{32}^{(2)} y z_{31} z z_{21}^{(7)} x(v)\right) \text {; where } v \in \mathcal{D}_{16} \otimes \mathcal{D}_{2} \otimes \mathcal{D}_{0} \\
& =\sigma_{2}\left(5 z_{32}^{(3)} y z_{21}^{(8)} x(v)\right)-z_{21} x z_{21}^{(7)} x \partial_{32}^{(3)}(v)+\sigma_{2}\left(z_{32}^{(2)} y z_{21}^{(8)} x \partial_{32}-\right. \\
& \left.z_{32}^{(2)} y z_{32} y \partial_{21}^{(8)}(v)+z_{32}^{(2)} y z_{31} z \partial_{21}^{(7)}(v)\right) \\
& =\frac{5}{45} z_{32} y z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{25}{252} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{5}{9} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)+\frac{1}{168} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31} \partial_{32}(v)- \\
& \frac{1}{8} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)+\frac{1}{3} z_{32} y z_{31} z \partial_{32} \partial_{21}^{(7)}(v) \\
& =\frac{1}{9} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{25}{252} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{25}{72} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)+\frac{1}{168} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)+ \\
& \frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{31}(v) \\
& \text { And }
\end{aligned}
$$

- $\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y \mathcal{Z}_{31} z \mathcal{Z}_{21}^{(8)} x(v)\right) ;$ where $v \in \mathcal{D}_{17} \otimes \mathcal{D}_{1} \otimes \mathcal{D}_{0}$

$$
=\sigma_{2}\left(6 Z_{32}^{(3)} y z_{21}^{(9)} x(v)\right)-Z_{21} x Z_{21}^{(8)} x \partial_{32}^{(3)}(v)+\sigma_{2}\left(z_{32}^{(2)} y Z_{21}^{(9)} x \partial_{32}-\right.
$$

$$
\left.z_{32}^{(2)} y z_{32} y \partial_{21}^{(9)}(v)+z_{32}^{(2)} y z_{31} z \partial_{21}^{(8)}(v)\right)
$$

$$
=\frac{6}{63} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)+\frac{6}{84} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)+
$$

$$
\frac{1}{252} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31} \partial_{32}(v)-\frac{1}{9} z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{32}(v)+
$$

$$
\frac{1}{3} z_{32} y z_{31} z \partial_{32} \partial_{21}^{(8)}(v)
$$

$$
=\frac{2}{21} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)+\frac{19}{252} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)+
$$

$$
\frac{2}{9} z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{32}(v)+\frac{1}{3} z_{32} y Z_{31} z \partial_{21}^{(7)} \partial_{31}(v)
$$

And

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{18} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{31}(v)-\right. \\
& \left.\frac{25}{504} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(-\frac{1}{18} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(5)} \partial_{31}(v)\right)+\frac{1}{18} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(5)} \partial_{31}(v)- \\
& \sigma_{2}\left(\frac{1}{18} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(5)} \partial_{31}(v)\right)+\frac{1}{18} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(5)} \partial_{31}(v)+ \\
& \sigma_{2}\left(\frac{25}{504} z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)} \partial_{32}(v)\right)-\frac{25}{504} z_{32} y z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{32}(v)+ \\
& \sigma_{2}\left(\frac{25}{504} z_{32} y z_{32} \mathcal{y} \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{32}(v)\right)-\frac{25}{504} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(6)} \partial_{32}(v) \\
& =\frac{1}{18} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)+\frac{2}{18} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)+ \\
& \frac{6}{18} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{31}(v)-\frac{50}{504} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{25}{504} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)-\frac{175}{504} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v) \\
& =\frac{1}{9} z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{31}^{(2)}(v)-\frac{25}{252} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32}^{(2)}(v)- \\
& \frac{25}{72} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{32}(v)+\frac{1}{168} z_{32} y z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{32} \partial_{31}(v)+\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(6)} \partial_{31}(v)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{21} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(6)} \partial_{31}(v)+\right. \\
& \left.\frac{1}{36} Z_{32} y Z_{31} z \mathcal{Z}_{21} x \partial_{21}^{(7)} \partial_{32}(v)\right) \\
& =\sigma_{2}\left(-\frac{1}{21} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(6)} \partial_{31}(v)\right)+\frac{1}{21} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(6)} \partial_{31}(v)- \\
& \sigma_{2}\left(\frac{1}{21} z_{32} y z_{32} y \partial_{21}^{(2)} \partial_{21}^{(6)} \partial_{31}(v)\right)+\frac{1}{21} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(6)} \partial_{31}(v)- \\
& \sigma_{2}\left(\frac{1}{36} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)} \partial_{32}(v)\right)+\frac{1}{36} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(7)} \partial_{32}(v)- \\
& \sigma_{2}\left(\frac{1}{36} z_{32} y Z_{32} y \partial_{21}^{(2)} \partial_{21}^{(7)} \partial_{32}(v)\right)+\frac{1}{36} Z_{32} y Z_{31} z \partial_{21} \partial_{21}^{(7)} \partial_{32}(v) \\
& =\frac{1}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)+\frac{2}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)+ \\
& \frac{7}{21} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v)+\frac{1}{36} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)+ \\
& \frac{8}{36} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{32}(v) \\
& =\frac{2}{21} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(5)} \partial_{31}^{(2)}(v)+\frac{19}{252} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{32} \partial_{31}(v)+ \\
& \frac{2}{9} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{32}(v)+\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(7)} \partial_{31}(v) \\
& \text { - }\left(\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}\right)\left(Z_{32}^{(2)} y \mathcal{Z}_{31} z \mathcal{Z}_{21}^{(9)} x(v)\right) \quad ; \text { where } v \in \mathcal{D}_{18} \otimes \mathcal{D}_{0} \otimes \mathcal{D}_{0} \\
& =\sigma_{2}\left(7 Z_{32}^{(3)} y Z_{21}^{(10)} x(v)\right)-Z_{21} x Z_{21}^{(9)} x \partial_{32}^{(3)}(v)+Z_{32}^{(2)} y Z_{21}^{(10)} x \partial_{32}- \\
& \sigma_{2}\left(z_{32}^{(2)} y z_{32} y \partial_{21}^{(10)}(v)+z_{32}^{(2)} y z_{31} z \partial_{21}^{(9)}(v)\right) \\
& =\frac{7}{84} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)+\frac{1}{3} Z_{32} y Z_{31} z \partial_{32} \partial_{21}^{(9)}(v) \\
& =\frac{1}{12} z_{32} y z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)+\frac{1}{3} z_{32} y z_{31} z \partial_{21}^{(8)} \partial_{31}(v) \text {, and } \\
& \left(\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}\right)\left(\frac{1}{24} Z_{32} y \mathcal{Z}_{31} z \mathcal{Z}_{21} x \partial_{21}^{(7)} \partial_{31}(v)\right) \\
& =\sigma_{2}\left(-\frac{1}{24} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(7)} \partial_{31}(v)\right)+\frac{1}{24} Z_{32} y Z_{21}^{(2)} x \partial_{32} \partial_{21}^{(7)} \partial_{31}(v)- \\
& \sigma_{2}\left(\frac{1}{24} z_{32} y z_{32} \mathcal{y} \partial_{21}^{(2)} \partial_{21}^{(7)} \partial_{31}(v)\right)+\frac{1}{24} z_{32} y z_{31} z \partial_{21} \partial_{21}^{(7)} \partial_{31}(v) \\
& =\frac{1}{12} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(6)} \partial_{31}^{(2)}(v)+\frac{1}{3} z_{32} y Z_{31} z \partial_{21}^{(8)} \partial_{31}(v) \text {. }
\end{aligned}
$$

Eventually, we define the boundary maps in the complex
$0 \longrightarrow \mathcal{L}_{3} \xrightarrow{\partial_{3}} \mathcal{L}_{2} \xrightarrow{\partial_{2}} \mathcal{L}_{1} \xrightarrow{\partial_{1}} \mathcal{L}_{0} ;$
where ∂_{1} is the operation of indicated polarization operators, $\partial_{1}, \partial_{2}$ and ∂_{3} defined as follows:

- $\partial_{1}\left(Z_{21} x(v)\right)=\partial_{21}(v) \quad ;$ where $v \in \mathcal{D}_{9} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{3}$
- $\partial_{1}\left(Z_{32} y(v)\right)=\partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{8} \otimes \mathcal{D}_{8} \otimes \mathcal{D}_{2}$
- $\partial_{2}\left(Z_{32} y z_{21}^{(2)} x(v)\right)=\frac{1}{2} z_{21} x \partial_{21} \partial_{32}(v)+z_{21} x \partial_{31}(v)-z_{32} y \partial_{21}^{(2)}(v) ;$
where $v \in \mathcal{D}_{10} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{2}$
- $\partial_{2}\left(Z_{32} y z_{31} z(v)\right)=\frac{1}{2} Z_{32} y \partial_{32} \partial_{21}(v)-Z_{21} x \partial_{32}^{(2)}(v)-Z_{32} y \partial_{31}(v)$;
where $v \in \mathcal{D}_{9} \otimes \mathcal{D}_{8} \otimes \mathcal{D}_{1}$
- $\partial_{3}\left(Z_{32} y Z_{31} z Z_{21} x(v)\right)=Z_{32} y Z_{21}^{(2)} x \partial_{32}(v)+Z_{32} y Z_{31} z \partial_{21}(v)$; where $v \in \mathcal{D}_{10} \otimes \mathcal{D}_{7} \otimes \mathcal{D}_{1}$

Theorem (3.3.5):

The complex (3.3.4) is exact and in characteristic-zero gives a resolution of $K_{(8,7,3)}(\mathcal{F})$.

Proof:

First, we prove the exactness of the complex

$$
0 \longrightarrow \mathcal{L}_{3} \xrightarrow{\partial_{3}} \mathcal{L}_{2} \xrightarrow{\partial_{2}} \mathcal{L}_{1}
$$

Since one component of the map ∂_{3} is a diagonalization of \mathcal{D}_{2} into $\mathcal{D}_{1} \otimes \mathcal{D}_{1}$ it is clear that ∂_{3} is injective. To prove the exactness at \mathcal{L}_{2}.

For this, we need to show that:
If $v \in \operatorname{ker}\left(\partial_{2}\right)$ then $\exists w \in \mathcal{L}_{3}$ such that $\partial_{3}(w)=v$
If $\partial_{2}(v)=0$ then $\exists(a, b) \in \mathcal{L}_{3} \oplus \mathcal{M}_{3}$ such that
$\delta(a, b)=(v, 0) \in \mathcal{L}_{2} \oplus \mathcal{M}_{2}$, but
$\delta(a, b)=\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}(a)+\delta_{\mathcal{L}_{3} \mathcal{M}_{2}}(a)+\delta_{\mathcal{M}_{2} \mathcal{L}_{2}}(b)+\delta_{\mathcal{M}_{3} \mathcal{M}_{2}}(b)$. So we get
$\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}(a)+\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}(b)=v$
and
$\delta_{\mathcal{L}_{3} \mathcal{M}_{2}}(a)+\delta_{\mathcal{M}_{3} \mathcal{M}_{2}}(b)=0$
Now if $w=a+\sigma_{3}(b)$ we can see that $\partial_{3}(w)=v$ in fact

$$
\begin{aligned}
& \partial_{3}(a)=\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}(a)+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}(a) \text {, and } \\
& \partial_{3}\left(\sigma_{3}(b)\right)=\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}(b)+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}(b) \text {, so } \\
& \partial_{3}\left(a+\sigma_{3}(b)\right)=\partial_{3}(a)+\partial_{3}\left(\sigma_{3}(b)\right) \\
& =\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}(a)+\sigma_{2} \circ \delta_{\mathcal{L}_{3} \mathcal{M}_{2}}(a)+\delta_{\mathcal{M}_{2} \mathcal{L}_{2}}(b)+\sigma_{2} \circ \delta_{\mathcal{M}_{3} \mathcal{M}_{2}}(b) \\
& =\delta_{\mathcal{L}_{3} \mathcal{L}_{2}}(a)+\delta_{\mathcal{M}_{3} \mathcal{L}_{2}}(b)+\sigma_{2} \circ\left(\left(\delta_{\mathcal{L}_{3} \mathcal{M}_{2}}(a)+\delta_{\mathcal{M}_{3} \mathcal{M}_{2}}(b)\right)\right.
\end{aligned}
$$

Hence from (1) and (2), we get $\partial_{3}(w)=v$; where $w=a+\partial_{3}(b)$.
This proves the exactness at \mathcal{L}_{2}.
As the same way we can prove the exactness at \mathcal{L}_{1}.
Eventually, from Theorem (1.2.7) we get the complex

$$
0 \longrightarrow \mathcal{L}_{3} \xrightarrow{\partial_{3}} \mathcal{L}_{2} \xrightarrow{\partial_{2}} \mathcal{L}_{1} \xrightarrow{\partial_{1}} \mathcal{L}_{0} \longrightarrow \mathcal{K}_{(8,7,3)}(\mathcal{F}) \longrightarrow 0
$$

is exact.

3.4 Characteristic-zero resolution of Weyl module with mapping Cone in the case of partition $(8,7,3)$

This section illustrates the resolution of Weyl module for characteristic-zero in the case of partition $(8,7,3)$ by using mapping Cone which enables us to get the results without depending on the resolution of Weyl module in characteristic-free for the same partition and prove it to be exact.

In this section before we study the resolution of Weyl module for characteristic-zero in isolation of characteristic-free, we need the mapping Cone [32]

Consider the following commute diagram

$$
\begin{aligned}
& \mathrm{C}_{0}: \quad \mathrm{C}_{\mathrm{n}-1} \xrightarrow{\mathrm{~d}_{\mathrm{n}-1}} \mathrm{C}_{\mathrm{n}} \xrightarrow{\mathrm{~d}_{\mathrm{n}}} \mathrm{C}_{\mathrm{n}+1} \xrightarrow{\mathrm{~d}_{\mathrm{n}+1}} \mathrm{C}_{\mathrm{n}+2} \ldots \\
& \downarrow \mathrm{f}_{\mathrm{n}-1} \quad \downarrow \mathrm{f}_{\mathrm{n}} \quad \downarrow \mathrm{f}_{\mathrm{n}+1} \quad \downarrow \mathrm{f}_{\mathrm{n}+2} \\
& D_{0}: \quad D_{n-1} \xrightarrow{d_{n-1}^{\prime}} D_{n} \xrightarrow{d_{n}^{\prime}} D_{n+1} \xrightarrow{d_{n+1}^{\prime}} D_{n+2} \ldots
\end{aligned}
$$

If the rows sequence are exact and
$\partial_{\mathrm{n}-1}: \mathrm{C}_{\mathrm{n}} \otimes \mathrm{D}_{\mathrm{n}-1} \longrightarrow \mathrm{C}_{\mathrm{n}+1} \otimes \mathrm{D}_{\mathrm{n}}$ defined by
$(\alpha, b) \longmapsto\left(-d_{\mathrm{n}}(\alpha), \mathrm{d}_{\mathrm{n}-1}^{\prime}(\mathrm{b}) \mathrm{t}+\mathrm{f}_{\mathrm{n}}(\alpha)\right)$ such hat $\partial_{\mathrm{n}-1} \circ \partial_{\mathrm{n}}=0 ; \forall \mathrm{n} \in \mathbb{Z}^{+}$
Then the sequence

$$
\mathrm{C}_{\mathrm{n}-1} \xrightarrow{\partial_{\mathrm{n}-1}} \mathrm{C}_{\mathrm{n}} \otimes \mathrm{D}_{\mathrm{n}-1} \xrightarrow{\partial_{\mathrm{n}}} \mathrm{C}_{\mathrm{n}+1} \otimes \mathrm{D}_{\mathrm{n}} \xrightarrow{\partial_{\mathrm{n}+1}} \mathrm{C}_{\mathrm{n}+2} \otimes \mathrm{D}_{\mathrm{n}+1} \xrightarrow{\partial_{\mathrm{n}+2}} \ldots,
$$

is exact.

Consider the complex of Lascoux in our partition $(8,7,3)$ as the following diagram:

Diagram (3.1)

Where $\quad h_{1}(v)=\partial_{21}(v) ; v \in \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F}$
$f_{1}(v)=\partial_{32}(v) ; v \in \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F}$
$h_{2}(v)=\partial_{21}^{(2)}(v) ; v \in \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}$
$h_{3}(v)=\partial_{21}(v) ; v \in \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}$ and
$g_{2}(v)=\partial_{32}(v) ; v \in \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}$

So we need to define g_{1} which make the diagram A commute, i.e
$\left(\partial_{21}^{(2)} \partial_{32}\right)(v)=\left(g_{1} \circ \partial_{21}\right)(v)$
From Capelli identities, we know that
$\partial_{21}^{(2)} \partial_{32}=\partial_{32} \partial_{21}^{(2)}-\partial_{21} \partial_{31} \quad$ and $\quad \partial_{21} \partial_{31}=\partial_{31} \partial_{21}$
Then

$$
\begin{aligned}
\partial_{21}^{(2)} \partial_{32} & =\frac{1}{2} \partial_{32} \partial_{21} \partial_{21}-\partial_{21} \partial_{31} \\
& =\frac{1}{2} \partial_{32} \partial_{21} \partial_{21}-\partial_{31} \partial_{21} \\
& =\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right) \partial_{21}
\end{aligned}
$$

So we get $g_{1}(v)=\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right)(v) ; v \in \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F}$

To find f_{2} which make the diagram B commute, i.e.

$$
\begin{aligned}
\left(g_{2} \circ h_{2}\right)(v) & =\left(h_{3} \circ f_{2}\right)(v) \\
\partial_{32} \partial_{21}^{(2)}(v) & =\left(\partial_{21} \circ f_{2}\right)(v) \\
\partial_{32} \partial_{21}^{(2)}(v) & =\partial_{21}^{(2)} \partial_{32}+\partial_{21} \partial_{31} \\
& =\frac{1}{2} \partial_{21} \partial_{21} \partial_{32}-\partial_{21} \partial_{31} \\
& =\partial_{21}\left(\frac{1}{2} \partial_{21} \partial_{32}-\partial_{31}\right)
\end{aligned}
$$

So we get $\mathcal{f}_{2}(v)=\left(\frac{1}{2} \partial_{21} \partial_{32}-\partial_{31}\right)(v) ; v \in \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}$

Now if we use the mapping Cone to the following diagram

We get the subcomplex

where $\varphi_{3}(x)=\left(-\partial_{21}(x), \partial_{32}(x)\right)$ and

$$
\delta_{1}\left(x_{1}, x_{2}\right)=\left(\partial_{21}^{(2)}\left(x_{2}\right)+\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right)\left(x_{1}\right)\right.
$$

Proposition (3.4.1):

$$
\delta_{1} \circ \varphi_{3}=0
$$

Proof:

$$
\begin{aligned}
\delta_{1} \circ \varphi_{3}(b) & =\delta_{1}\left(-\partial_{21}(b), \partial_{32}(b)\right) \\
& =\partial_{21}^{(2)}\left(\partial_{32}(b)\right)+\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right)\left(-\partial_{21}(b)\right) \\
\delta_{1} \circ \varphi_{3}(b) & =\left(\partial_{21}^{(2)} \partial_{32}\right)(b)-\left(\frac{1}{2} \partial_{32} \partial_{21} \partial_{21}\right)(b)+\left(\partial_{31} \partial_{21}\right)(b) \\
& =\left(\partial_{21}^{(2)} \partial_{32}\right)(b)-\left(\partial_{32} \partial_{21}^{(2)}\right)(b)+\left(\partial_{31} \partial_{21}\right)(b)
\end{aligned}
$$

But from Capelli identities we have
$\partial_{21}^{(2)} \partial_{32}=\partial_{32} \partial_{21}^{(2)}-\partial_{21} \partial_{31} \quad$ and $\quad \partial_{31} \partial_{21}=\partial_{21} \partial_{31}$
Then

$$
\begin{aligned}
\delta_{1} \circ \varphi_{3}(b) & =\left(\partial_{32} \partial_{21}^{(2)}\right)(b)-\left(\partial_{21} \partial_{31}\right)(b)-\left(\partial_{32} \partial_{21}^{(2)}\right)(b)+\left(\partial_{21} \partial_{31}\right)(b) \\
& =0
\end{aligned}
$$

By employing a mapping Cone again on the subcomplex (3.4.1) and the rest of diagram (3.1) we have

Diagram (3.2)

Now we define

$$
\begin{aligned}
& \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \\
& \delta_{2}: \quad \oplus \quad \longrightarrow \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \quad \text { by } \\
& \delta_{2}(a, b)=\partial_{32}^{(2)}(a)+\left(\frac{1}{2} \partial_{21} \partial_{32}+\partial_{31}\right)(b)
\end{aligned}
$$

Proposition (3.4.2):

The diagram C is commute.

Proof:

To prove the diagram is commute it is sufficient to prove that

$$
\begin{aligned}
\left(g_{2} \circ \delta_{1}\right)(a, b) & =\left(h_{3} \circ \delta_{2}\right)(a, b) \\
\left(g_{2} \circ \delta_{1}\right)(a, b) & =g_{2}\left(\partial_{21}^{(2)}(b)+\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right)(a)\right) \\
& =\partial_{32}\left(\partial_{21}^{(2)}(b)+\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right)(a)\right) \\
& =\left(\partial_{32} \partial_{21}^{(2)}\right)(b)+\left(\frac{1}{2} \partial_{32} \partial_{32} \partial_{21}-\partial_{32} \partial_{31}\right)(a) \\
& =\left(\partial_{32} \partial_{21}^{(2)}\right)(b)+\left(\partial_{32}^{(2)} \partial_{21}-\partial_{32} \partial_{31}\right)(a)
\end{aligned}
$$

But from Capelli identities we have
$\partial_{32}^{(2)} \partial_{21}=\partial_{21} \partial_{32}^{(2)}+\partial_{32} \partial_{31}$ and $\partial_{32} \partial_{21}^{(2)}=\partial_{21}^{(2)} \partial_{32}+\partial_{21} \partial_{31}$
So we get

$$
\begin{aligned}
\left(g_{2} \circ \delta_{1}\right)(a, b) & =\left(\partial_{21}^{(2)} \partial_{32}+\partial_{21} \partial_{31}\right)(b)+\left(\partial_{21} \partial_{32}^{(2)}+\partial_{32} \partial_{31}-\partial_{32} \partial_{31}\right)(a) \\
& =\left(\frac{1}{2} \partial_{21} \partial_{21} \partial_{32}+\partial_{21} \partial_{31}\right)(b)+\left(\partial_{21} \partial_{32}^{(2)}\right)(a) \\
& =\partial_{21}\left[\left(\frac{1}{2} \partial_{21} \partial_{32}+\partial_{31}\right)(b)+\partial_{32}^{(2)}(a)\right] \\
& =\left(h_{3} \circ \delta_{2}\right)(a, b)
\end{aligned}
$$

Hence from the mapping Cone, we have the following complex

where

$$
\begin{aligned}
& \varphi_{2}(a, b)=\left(-\delta_{1}(a, b), \delta_{2}(a, b)\right) \\
& =\left(-\partial_{21}^{(2)}(b)-\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right)(a), \partial_{32}^{(2)}(a)+\left(\frac{1}{2} \partial_{21} \partial_{32}+\partial_{31}\right)(b)\right) \\
& \varphi_{1}(a, b)=\partial_{32}(a)+\partial_{21}(b)
\end{aligned}
$$

Proposition (3.4.3):

$$
\varphi_{2} \circ \varphi_{3}=0
$$

Proof:

$$
\begin{aligned}
& \left(\varphi_{2} \circ \varphi_{3}\right)(a)=\varphi_{2}\left(-\partial_{21}(a), \partial_{32}(a)\right) ; a \in \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \\
= & \left(\left(-\partial_{21}^{(2)} \partial_{32}\right)(a)+\left(\frac{1}{2} \partial_{32} \partial_{21} \partial_{21}-\partial_{31} \partial_{21}\right)(a),\right. \\
& \left.\left(-\partial_{32}^{(2)} \partial_{21}\right)(a)+\left(\frac{1}{2} \partial_{21} \partial_{32} \partial_{32}+\partial_{31} \partial_{32}\right)(a)\right) \\
= & \left(\left(-\partial_{21}^{(2)} \partial_{32}\right)(a)+\left(\partial_{32} \partial_{21}^{(2)}-\partial_{31} \partial_{21}\right)(a),\left(-\partial_{32}^{(2)} \partial_{21}\right)(a)+\right. \\
& \left.\left(\partial_{21} \partial_{32}^{(2)}+\partial_{31} \partial_{32}\right)(a)\right)
\end{aligned}
$$

But from Capelli identities we have
$\partial_{32} \partial_{21}^{(2)}=\partial_{21}^{(2)} \partial_{32}+\partial_{21} \partial_{31}, \partial_{21} \partial_{32}^{(2)}=\partial_{32}^{(2)} \partial_{21}-\partial_{32} \partial_{31}$,
$\partial_{21} \partial_{31}=\partial_{31} \partial_{21}$ and $\partial_{32} \partial_{31}=\partial_{31} \partial_{32}$
Which implies that

$$
\begin{aligned}
& \left(\varphi_{2} \circ \varphi_{3}\right)(a) \\
& =\left(\left(-\partial_{21}^{(2)} \partial_{32}\right)(a)+\left(\partial_{21}^{(2)} \partial_{32}\right)(a)+\left(\partial_{21} \partial_{31}\right)(a)-\left(\partial_{21} \partial_{31}\right)(a),\right. \\
& \\
& \left.\left(-\partial_{32}^{(2)} \partial_{21}\right)(a)+\left(\partial_{32}^{(2)} \partial_{21}\right)(a)-\left(\partial_{32} \partial_{31}\right)(a)+\left(\partial_{32} \partial_{31}\right)(a)\right) \\
& =(0,0) \quad
\end{aligned}
$$

Proposition (3.4.4):

$$
\varphi_{1} \circ \varphi_{2}=0
$$

Proof:

$$
\begin{aligned}
\left(\varphi_{1} \circ \varphi_{2}\right)(a, b)= & \varphi_{1}\left(-\partial_{21}^{(2)}(b)-\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right)(a), \partial_{32}^{(2)}(a)+\right. \\
& \left.\left(\frac{1}{2} \partial_{21} \partial_{32}+\partial_{31}\right)(b)\right) \\
= & \left(-\partial_{32} \partial_{21}^{(2)}\right)(b)-\left(\frac{1}{2} \partial_{32} \partial_{32} \partial_{21}\right)(a)-\left(\partial_{32} \partial_{31}\right)(a)+ \\
& \left(\partial_{21} \partial_{32}^{(2)}\right)(a)+\left(\frac{1}{2} \partial_{21} \partial_{21} \partial_{32}\right)(b)+\left(\partial_{21} \partial_{31}\right)(b) \\
\left(\varphi_{1} \circ \varphi_{2}\right)(a, b)= & \left(-\partial_{32} \partial_{21}^{(2)}\right)(b)-\left(\partial_{32}^{(2)} \partial_{21}\right)(a)-\left(\partial_{32} \partial_{31}\right)(a)+ \\
& \left(\partial_{21} \partial_{32}^{(2)}\right)(a)+\left(\partial_{21}^{(2)} \partial_{32}\right)(b)+\left(\partial_{21} \partial_{31}\right)(b)
\end{aligned}
$$

Again from Capelli identities we get

$$
\begin{aligned}
& \left(\varphi_{1} \circ \varphi_{2}\right)(a, b)= \\
& -\partial_{21}^{(2)} \partial_{32}(b)-\left(\partial_{21} \partial_{31}\right)(b)-\left(\partial_{21} \partial_{32}^{(2)}\right)(a)-\left(\partial_{32} \partial_{31}\right)(a)+ \\
& \left(\partial_{32} \partial_{31}\right)(a)+\left(\partial_{21} \partial_{32}^{(2)}\right)(a)+\left(\partial_{21}^{(2)} \partial_{32}\right)(b)+\left(\partial_{21} \partial_{31}\right)(b) \\
& =0
\end{aligned}
$$

Finally, we present the following theorem which shows that the complex of Lascoux in the case of partition $(8,7,3)$ is exact.

Theorem (3.4.5):

The complex

is exact.

Proof:

Since the diagrams, A and B in a diagram (3.1) are commutes and each of the maps
$h_{1}: \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \longrightarrow \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} ;$ where $h_{1}(v)=\partial_{21}(v)$, and
$h_{2}: \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \longrightarrow \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} ;$ where $h_{2}(v)=\partial_{21}^{(2)}(v)$,
are injective [15], then we have a commuting diagram with an exact row. But from Proposition (3.4.1) we have $\delta_{1} \circ \varphi_{3}=0$ which implies that the mapping Cone conditions are satisfied and the complex

$$
0 \longrightarrow \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \xrightarrow{\varphi_{3}} \begin{gathered}
\mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \\
\mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}
\end{gathered} \stackrel{\delta_{1}}{\longrightarrow} \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}
$$

is exact.
Now consider the diagram (3.2), since diagram C is commute and $h_{3}: \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \longrightarrow \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} ;$ where $\quad h_{3}(v)=\partial_{21}(v)$ is injective [18], so we have diagram (3.2) commute with exact rows. But $\varphi_{2} \circ \varphi_{3}=0$ (Proposition (3.4.3)) and $\varphi_{1} \circ \varphi_{2}=0$ (Proposition (3.4.4)) then again the mapping Cone conditions are satisfied, so we get the complex

$$
0 \longrightarrow \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \xrightarrow{\varphi_{3}} \underset{\mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}}{\substack{\mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \\ \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}}} \xrightarrow{\varphi_{2}} \stackrel{\mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}}{\oplus} \xrightarrow{\varphi_{1} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \xrightarrow{\boldsymbol{d}^{\prime}(8,7,3)(\mathcal{F})} \mathcal{K}_{(8,7,3)}(\mathcal{F}) \longrightarrow 0}
$$ is exact.

[1] N.T. Abdul Razak, "The reduction of resolution of Weyl module from characteristic-free to Lascoux resolution in case ($6,5,3$)", M.Sc. Thesis, Mustansiriyah University, 2016.
[2] K. Akin, D.A. Buchsbaum and J.Weymen, "Schur functors and Schur complexes", Adv. Math., Vol.44, pp.207-278, 1982.
[3] K. Akin and D.A. Buchsbaum, "Characteristic-free representation theory of the general linear group", Adv. Math., Vol.58, pp.149-200, 1985.
[4] K. Akin, "On complexes relating the Jacobi-Trudi identity with the Brnstein-Gelfand-Gelfand resolution", Journal of Algebra, Vol.177, pp.494-503, 1988.
[5] K. Akin and D.A. Buchsbaum ", Charasteristic-free representation theory of the general group II", Homological Consideration, Adv. Math., Vol.72, 1988.
[6] K. Akin and D.A. Buchsbaum, "A note on the poincare resolution of the coordinate ring of the Grassmannian", Journal of Algebra, Vol.152, No.2, pp.427-433, 1992.
[7] K. Akin and D.A. Buchsbaum, "Characteristic-free realizations of the Giambelli and Jacoby-Trudi derterminatal identites", Proc. of K.I.T., Workshop on Algebra and Topology, Springer-Verlag, 1993.
[8] M. Artale and G. Boffi, "On a subcomplex of the Schur complex", Journal of Algebra, Vol.176, pp.762-785, 1995.
[9] A.O. Azziz, "Resolution of Weyl module and Lascoux resolution in the case of the partition (3,3,2)", M.Sc. Thesis, Mustansiriyah University, 2015.
[10] G. Boffi and D.A. Buchsbaum, "Threading homology through algebra: selected patterns", Clorendon Press, Oxford, 2006.
[11] D.A. Buchsbaum, "Jacobi-Trudi and Giabelli identities in characteristic-free form ", Contemporary Mathematics, Vol.88, 1989.
[12] D.A. Buchsbaum and G.C. Rota, "Projective resolution of Weyl modules", Natl. Acad. Sci. USA, Vol.90, pp.2448-2450, 1993.
[13] D.A Buchsbaum and G.C. Rota, "A new constructruction in homological algebra", Nati. Acad. Sci. USA, Vol.91, Issue 10, pp.4115-4119, 1994.
[14] D.A Buchsbaum, "Letter place methods and homotopy", Birkhauser, pp.41-62, 1998.
[15] D.A. Buchsbaum and G.C. Rota, "Approaches to resolution of Weyl modules", Adv. In Applied Math., Vol.27, pp.182-191, 2001.
[16] D.A. Buchsbaum, "Resolution of Weyl modules: the rota touch", Algebraic Combinatorics and Computer Science, Springer-Verlag, Italian, Milano, pp.97-109, 2001.
[17] D.A. Buchsbaum and B.D. Taylor, "Homotopies for resolution of skewhook shapes", Adv. In Applied Math., Vol.30, pp.26-43, 2003.
[18] D.A. Buchsbaum, "A characteristic-free example of Lascoux resolution, and letter place methods for intertwining numbers", European Journal of Gombinatorics, Vol.25, pp.1169-1179, 2004.
[19] C. De Concini, D. Eisenbud and C. Procesi, "Young diagrams and determintal varieties", Inveent. Math., Vol.59, pp.129-165, 1980.
[20] J. Desarmenien, J.P.S. Kung and G.C. Rota, "Invariant theory", Young Bitableaux and Combinatories, Adv. Math., Vol.27, pp.63-92, 1978.
[21] A. Eiichi, "Hopf algebra", Hisae Kinoshita and Hiroko Tonaka, Cambridge University Pree USA, 1977.
[22] F.D. Grosshans, G.C. Rota and J.A. Stein, "Invariant theory and super algebra national science foundation", No.69, 1987.
[23] H.R. Hassan, "Application of the characteristic-free resolution of Weyl module to the Lascoux resolution in the case ($3,3,3$)", Ph.D. Thesis, Universitá di Roma "Tor Vergata", 2005.
[24] H.R. Hassan, "On the resolution of Wely module in the case of two-rowed skew-shape $(\mathrm{p}+\mathrm{t}, \mathrm{q}) /(\mathrm{t}, 0)$ ", Mustansiriyah J. Sci., Vol.21, No.5, pp.470-473, 2010.
[25] H.R. Hassan, "The reduction of Wely module from characteristic-free to Lascoux resolution in case ($4,4,3$)", Ibn Al-Haitham J. for Pure and Applied Sci., Vol.25, No.3, pp.341-355, 2012.
[26] H.R. Hassan, "Complex of Lascoux in partition (4,4,4)", Iraqi J. Sci., Vol.54, No.1, pp.170-173, 2013.
[27] A. Lascoux, "Polynomes symetriques", Foncteurs de Schur et Grassmanniennes, Thése Université de Paris, VII, 1977.
[28] M.M. Mohammed, "Application of the characteristic-free of Weyl module to the Lascoux resolution in case ($6,6,3$)", M.Sc. Thesis, Mustansiriyah University, 2016.
[29] N.M. Mustafa, "Resolution of Weyl module in the case of the partition $(7,6,3) "$, M.Sc. Thesis, Mustansiriyah University, 2017.
[30] G.C. Rota and J.A. Stein, "Standard basis in super simpleton algebra", Natl. Acad.Sci. USA, Vol.86, pp.2521-2524, 1989.
[31] J.J. Rotman, "Introduction to homological algebra", Academic Prees, INC, 1979.
[32] L.R. Vermani, "An elementary approach to homogical algebra", Chapman and Hall/CRC, Monographs and Surveys in pure and Applied mathematics, Vol.130, 2003.

$$
\begin{aligned}
& \text { Sliggestiollf } \\
& \text { for } \\
& \text { fulture Worlis }
\end{aligned}
$$

Suggestions for future works

Based on the present work, the following topics are put forward for future works

1. Study the resolution of Weyl module of skew partition $(8,7,3) /(2,1)$
(i.e. the resolution of Weyl module in our case with two-overlap).
2. Study the Lascoux resolution of the skew partition $(8,7,3) /(3,1)$
(i.e. the resolution of Lascoux in our case with triple-overlap).

Published papers

1- Haytham R. Hassan, Niran Sabah Jasim, Application of Weyl module in the case of two rows, Journal of physics:Conference series, IOP science, Vol. 1003 (012051), pp.1-15, 2018.

2- Haytham R. Hassan , Niran Sabah Jasim, A complex of characteristic zero in the case of the partition (8,7,3), Science international-Lahore, Vol.30(4), pp.639-641, 2018.

3- Haytham R. Hassan, Niran Sabah Jasim, On free resolution of Weyl module and zero characteristic resolution in the case of partition $(8,7,3)$, Baghdad science journal, Vol.15(4), pp.455-465, 2018.

4- Haytham R. Hassan, Niran Sabah Jasim, Characteristic zero resolution of Weyl module in the case of the partition $(8,7,3)$, to appear.

املسمتخلص

ليكن F مقاس حر مُمرف على الحلقة الإبدالية ذات الححايد
الجبرية المقسمة من الارجة n
بإستخدام تنتيات معقدة من النمط بار و جبر حروف المكان مع مشخصات كابلي،
 خلالها جميع مقاسات وايل (صور لتطبيق وايل . ${ }^{\prime}{ }_{\lambda / \mu(\mathcal{F}}{ }^{\prime}$
في هذه الاطروحة ناقثنا تطبيق لتحلل مقاس وايل بصفين في حالة التجزئة $(8,7)$ لإيجاد حدود ذلك النحلل وبر هان إنه تام. أيضا كتطبيق لتحلل مقاس وايل بثلاثة صفوف وجدنا حدود تحلل المميز- الحر في حالة التجزئة (8,7,3)، حدود معقدة لاسكو للتجزئة ذاتها و مخططات معقدة لاسكو أيضأ للتجزئة ذاتها. كتعيم للفكرة ذاتها التي إستخدمها بوكسباوم وجدنا الاختزال من تحلل المميز- الحر الى تحلل المميز- الصفري (تحلل لاسكو) مع إستخدام تطبيقات الحدود المستخدمة في الميزيز- الصفري في حالة النجزئة (8,7,3). وأخيراً، بابستخدام تطبيق كون ومخططاته درسنا تحلل المميز- الصفري (تحلل لاسكو) وبر هنا إنه نام دون الاعتماد على تطبيقات الحدود للتجزئة ذاتها.

جمهورية العراق
وزارة التعليم العالي والبحث العلمي
الجامعة الستنصرية
كلية العلور

تطبيق التحلل للمميز-الحر طقاس وايل على تحلل لاسكو في حالة التجزئة $(8,7,3)$
(b)

مقدمة اللى مجلس كلية العلوم - الجامعة الستنصرية وهي جزء من متطلبات نيل درجة دكتوراه فلسفة علوم في الرياضيات

هـ
نيران صباح جاسد
-
الاستاذ الطساعد الدكتور هيڭم لزوقي حسن

