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ABSTRACT 

The purpose of this work is to present a class of harmonic univalent 

functions defined by the Dziok-Srivastava operator. Some geometric 

properties like coefficients conditions, distortion theorem, convolution 

(Hadamard product), convex combination and extreme points are 

investigated. 
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1. Introduction 
Let   denote the class of functions      which are 

analytic in the open unit disk  

  {  | |   }  Each      can be represented by 

         ̅, with   and   of analytic type in U. We 

say that    is an analytic part and   the related co-

analytic part of   (see[2]). Thus for   

              we can write  

       ∑ 
      

           ∑ 
      

  
   |  |      …... (1) 

Let          given by (1) and              
     

is Dziok- 

Srivastava operator of   and is given by [8]   
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Where 
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…… (3) 

Let             be the family of functions harmonic 

type of the form (1) by 

   {
            
     

    

              
           

}                  

where             
          is defined by (2). …. (4) 

Let           denoted that the subclass of 

          such that   and   are the from 

       ∑ 
      

           
      ∑ 

      
  |  |       … (5)  

2. The Main Results 
In this section, the main important results are stated 

and proved an enough coefficient to functions of 

harmonic univalent types. 

Theorem 2.1: Let             be given by (1), if  

       ∑  
         |           ||  || |

  
∑  

         |           ||  || |
  

           …... (6) 

 where                 , then,   harmonic of 

sense-preserving type to   with 

  (s,a;b,λ)=
    
 

            

 
   
 

           
 
   

   
  

            

            
 . 

Proof: For         we have  

          |
            

            
|    |

             

             
|  
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Hence proved univalent, since 
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By using the case of              |     |  
|     |    
 for            it show that   
         |                  |  |       
            |       ….(7) 

where   

               =            
          ,       = 

              
             

Consider |                  | 
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           |           ||  || |
  

∑  
           |           ||  || |
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And  

|                  | 
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–           
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      ……(9) 

 Substituting (8) and (9) in    , we obtain  

 ∑  
          |           ||  | | |

  
 ∑  

           |           ||  | | |
   

                   , 
so 
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                          . 
Theorem 2.2: Let           is formulated by (5). 

Then                if and only if 
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where 
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Proof: Since   (         (         we just need 

to prove the only if part of the theorem.  We notice 

that the condition (5) is equation to 
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    ]       …(11) 

The condition (11) must satisfy for all values of    on 

the positive real axis, where 

| |       , we must have 
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 If the condition (6) does not hold then the numerator 

in (8), when goes to 1 is negative. This is a 

contradiction with the situation case where   

           and so the proof is accomplished. 

3. The Distortion Theorem 

Theorem 3.1: Suppose              Then 
| |       , we can get 
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Proof: We have   
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4. The Convolution (Hadamard product) 
Let 

           ∑ 
     |  | 

         ∑ 
     |  | 
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 . 

 Then, form the convolution of        and        we 

can obtain        

                     = 
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     |  ||  | 

   

      ∑ 
     |  | |  | 

 
  

Theorem 4.1: Let        (       and      

  (        Then for                   

0        we have 

                      (      , then satisfy 

(6) and since (|  |    |  |      
 we write  

 ∑  
   (

      

   
|    |  

      

   
|    |) |           |  

  ∑  
   (

      

   
|  |  

      

   
|  |) |           |  

The last inequality is bounded of the right hand side 

above by(1), then 

                          . 

5. The Convex Combination 
This section, is devoted to prove that the space 

          is closed under convex combination. 

Suppose that the        is formulated for   
            , by the following form     

        ∑ 
   |    | 

         ∑ 
   |    | 

 
   

….(13) 

Theorem 5.1: Assume that the functions    is given 

by (13) be in the class          , for every      
         . Then the functions       well-defined by 

       ∑ 
                       are also in the 

class           where ∑ 
       . 

Proof. In view of the       definition, we can write 

reformulate 
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 …. (14) 

Further, since       are in          , for every 
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6. The Extreme Point 
In this part, we get the extreme points for the class 

           
Theorem 6.1: Suppose   be given by (5).  Then 

           ,   
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                           …(15) 

where  

       , 
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and 
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In particular, the extreme points of             
are {   } and {  }.  

Proof: The form (15), we get  
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And so               

Conversely, assume that            .  
Letting 
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|  |            
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we obtain 

               ∑ 
      

         ∑   
 
     

 
  

        ∑ 
    

      |           |

   
   

   

      ∑ 
   

      |           |

   
    

 
   

        ∑ 
            ]   ∑ 

       
     ]    

      
   ∑ 

      ∑ 
     ]  ∑ 
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 ∑ 

                     . 
This completes the proof. 

Conclusion 
We have shown that a new class to functions of 

harmonic univalent type, interesting results 

concerning the harmonic univalent functions defined 

by the Dziok-Srivastava operator. Thus, some 

geometric properties like coefficients conditions, 

distortion theorem, convolution (Hadamard product), 

extreme points and convex combination are 

investigated and examined. Finally, Moreover, many 

problems still opened, for example, the extension of 

these results to the case of subclasses for various 

linear operator [9-11]. 
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Dziok-Srivastava الدوال الاحادية التكافؤ التوافقية معرفة بواسطة المؤثر 
 1، رحيم احمد منصور 2، عبد الرحمن سممان جمعة1ميس صالح عبد الامير

 الرياضيات ، كمية التربية لمعموم الصرفة ، جامعة تكريت ، تكريت ، العراققسم  1
 قسم الرياضيات ، كمية التربية لمعموم الصرفة ، جامعة الانبار ، الرمادي ، العراق 2
 

 الممخص
 . Dziok-Srivastava لالغرض من هذا العمل هو تقديم فئة من الدوال التوافقية أحادية التكافؤ التي حددها عامل التشغي

 والنقاط المتطرفة. التركيبة المحدبة)ضرب هادمارد(،  دراسة بعض الخصائص الهندسية مثل شروط المعاملات، نظرية التشويه، الالتواء تم
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