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Abstract In this paper, we deal with the existence outcomes for a fractional iterative dif-
ferential equation involving first order derivative in a Banach space. The appliance utilized
in this study, is the non-expansive operator method and BGK (Browder–Ghode–Kirk) fixed
point theorem. The fractional differential operator is taken in the sense of Riemann–Liouville.
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Introduction

In this study, we concern about mathematical models in biology. It refers to the growth of bac-
teria [1]. We generalize and extend the classical model based on the concept of the fractional
calculus [2–7]. The best area of this concept is the fractional iterative differential equations.
Various authors have studied particular kinds of differential equations called iterative differ-
ential equations [8–12]. Few authors had studied fractional iterative differential equations
[13–17].

The existence of solutions, regarding this class, has different entryway, such as Schauder’s
fixed point, Picard’s successive approximation, contraction principle, etc. The fundamental
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form of this equation is as follows:

z′(u) = z(z(u)) (1)

then extended the Eq. (1) to the form

z′(u) = g(z(z(u))) (2)

and
u′(s) = g(s, u(s), u(u(s))). (3)

The fractional iterative differential equation is suggested in [14] for the equation

Dγ u(s) = g(s, u(s), u(u(s))).

Ibrahim and Darus [16] studied the existence of an infective disease processes

Dγ u(s) = h(s, u(s), u(βs), u(u(s))), β ∈ (0, 1]. (4)

Recently, the authors investigated the existence of the general iterative fractional differential
equation [17]

Dγ z(u) = g(u, z[1](u), z[2](u), . . . , z[ j](u)) (5)

linked with z(u0) = z0, where z[m](u) := z(z[m−1](u)) indicates the m − th iterate of
self-mapping z, with m = 1, 2, . . . , j . The stability of the above equation is investigated in
[18].

In this note, we found an existence outcome for a fractional iterative differential equation
involving first order derivative in a Banach space

Dγ v(s) = f (s, v(s), v(ξ1s), v
′(ξ2s))

v(s0) = v0. (6)

Consequently, as an application of (2), we establish the outcome of the equation

Dγ v(s) = f (s, v(s), v(v(s)), v′(v(s)))

v(s0) = v0. (7)

Preliminaries

In this section, we introduce some important concepts, which are useful in the sequel.

Definition 1 The fractional derivative in the Caputo sense is defined as:

Dβ
a g(τ ) = 1

�(m − β)

∫ τ

a

g(m)(μ)

(t − μ)γ−m+1 dμ

(m − 1) ≤ β < m, (8)

where m is integer and β is real number.

Definition 2 The fractional derivative in the Riemann and Liouville sense is defined as:

Dtβg(u) = 1

�(m − β)

[
d

du

]m ∫ u

a

g(μ)

(u − ζ )β−m+1 dμ

(m − 1) ≤ β < m, (9)

in which m is integer and β is real number.
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Definition 3 The integral operator corresponding to the above operators is formulated by

Dγ
a g(s) =

∫ s

a

(s − ζ )γ−1

�(γ )
g(ζ )dζ (10)

where γ > 0. Next, we present the descriptions and a fixed point theorem for non-expansive
mappings which will be the main role in this note [20].

Definition 4 Let (Z , d) be a metric space and H : Z → Z is a mapping said to be an
γ -contraction if there is γ ∈ [0, 1) so that

d(Hz, Hw) ≤ γ d(z, w),∀z, w ∈ Z .

When γ = 1, it is said that the application is non-expansive. Let Q be a not empty of real
normed linear space A and H : Q → Q be a map. In this case, H is not expansive if

‖Hz − Hw‖ → ‖z − w‖ , ∀z, w ∈ Q.

Remark The fixed points of H can be approximated by Krasnoselskij sequence, demarcated
as follows:

Let Q be a convex form subset of a normed linear space A and let H : Q → Q be an self
mapping. In view of s0 ∈ Q and the real numbers ξ ∈ [0, 1], sm is sequence introduced by
the formula

sm+1 = (1 − ξ)sm + ξHsm, m = 0, 1, 2, . . .

is generally called iteration of Krasnoselskij or iteration of Krasnoselskij–Mann. For s0 ∈ Q,
sm is sequence introduced by the formula:

(∗) sm+1 = (1 − ξm)sm + ξmHsm, m = 0, 1, 2, . . .

in which ξm is a sequence of real numbers and subset from [0, 1] satisfying an appropriate
condition is known iteration of Krasnoselskij–Mann.

The following results will be particularly important for the application section of our note.

Theorem 5 ([21]) A is Banach space and Q ⊂ A, and H : Q → Q is a non expansive
mapping. For arbitrary s0 ∈ Q, consider the iteration of Mann process sm presented by (*)
under the following hypotheses:

(i) sm ∈ Q for each non negative integers m,
(ii) 0 ≤ ξm ≤ b < 1 for each non negative integers m,
(iii)

∑∞
m=0 ξm = ∞. If sm is bounded, next sm − Hsm → 0 as m → ∞.

Corollary 6 ([22]) Let A be Banach space and Q is a compact, convex and subset of A and
let H : Q → Q be a non expansive mapping. Whether process hypotheses Mann iteration
Sm satisfied (i) − (i i) in Theorem 5, therefor Sm is a strongly converges to a fixed point H.

Corollary 7 ([22]) Let A be a real normed space and Q is a convex, closed bounded and
subset of A and let H : Q → Q be a non expansive mapping. Whether I − H maps closed
bounded subsets of A into closed subsets of A and Sm is iteration of Mann, with ξm is satisfied
hypotheses (i) − (i i) in Theorem 5, therefor Sm is a strongly converges to a fixed point of H
in Q.
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Main Findings

From Eq. (19), have the following problem being studied

Dβv(s) = g(s, v(s), v(ξ1s), v
′(ξ2s))

v(s0) = v0, (11)

in which s0, v0 I , ξ ∈ (0, 1) and g ∈ C(I × I × I × I ), where I = [a, b]. This issue
Eq. (19) it extends. We make the first result of there are solutions to the problem of initial
value (11). For s ∈ I denoting

Cs = max {s − a, b − s}
C�,β =

{
v ∈ C(I, I ) : |v(s1) − v(s2)| ≤ � · |s1 − s2|β

�(β + 1)
, ∀s1, s1 ∈ I

}
, (12)

in which � > 0. in which � > 0. It is obvious which C�,β in non empty compact and convex
subset of the space of Banach C[I ], ‖.‖, in which ‖z‖ = sups∈I |z(t)|.
Theorem 8 Suppose the following conditions for the problem of initial value (11) are satis-
fied

(1) g ∈ C(I × I × I × I ),
(2) there is �1 > 0 so that

|g(χ,ϒ1, z1,�1)−g(χ,ϒ2, z2,�2)| ≤ �1[|ϒ1−ϒ2|+|z1−z2|+|�1−�2|] (13)

for every χ,ϒ j , z j ,� j ∈ I, j = 1, 2,
(3) if � is the constant of Lipschitz involved in (13), therefore

M = max {|g(χ,ϒ, z,�)| : (χ,ϒ, z,�) ∈ [a, b]} ≤ �

2
,

(4) One of these conditions are achieved:

(i)
M.Bβ

�(β + 1)
.Cs0 ≤ Cv0 , where B = max[a, b]

(i i) s0 = 0, M
(B)β

�(β + 1)
≤ b − v0, g(χ,ϒ, z,�) ≥ 0, ∀(χ,ϒ, z,�) ∈ I,

(i i i) s0 = b, M
(B)β

�(β + 1)
≤ v0 − a, g(χ,ϒ, z,�) ≥ 0, ∀(χ,ϒ, z,�) ∈ I,

(5) 3 Bβ

�(β+1) �1 · Cs0 ≤ 1.

Next the problem (11) having at least one solution in C�, that may be approximated by
iteration Krasnoselskij

vm+1(u) = (1 − η)vm(u) + ηv0

+η

∫ u

s0

(u − μ)β−1

�(β)
g(μ, vm(μ), vm(ξμ), v′

m(μ))dμ, u ∈ I, m ≥ 1, u > μ

where η in(0, 1) and v1, v
′
1 ∈ C� is arbitrary.
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Proof As a result of Arzela–Ascoli, let (C[I ], ‖.‖) Banach space and C� ⊂ (C[I ], ‖.‖) is
not empty, convex, and compact such that ‖s‖ = supu∈[a,b] |s(u)|.

Consider the operator of integral G : C� → C[I ] introduced by

(Gv)(u) = v0 +
∫ u

s0

(u − μ)β−1

�(β)
g(μ, v(μ), v(ξμ), v′(μ))dμ, u ∈ I, u > μ

Let v = Gv is a solution of the initial value problem (11) for Any fixed point. show that
C� is an invariant set with regard to G, i.e, G(C�) subset form C�.

Whether the condition (1) achieves, therefor for any v ∈ C� and u ∈ C[I ] we get

|(Gv)(u)| ≤ |v0| +
∣∣∣∣
∫ u

s0

(u − μ)β−1

�(β)
g(μ, v(μ), v(ξμ), v′(μ))dβ

∣∣∣∣ ≤ |v0| + M
(s0 − u)γ

�(γ + 1)
≤ b

|(Gv)(u)| ≥ |v0| −
∣∣∣∣
∫ u

s0

(u − μ)β−1

�(β)
g(μ, v(μ), v(ξμ), v′(μ))dβ

∣∣∣∣ ≥ |v0| − M
(s0 − u)β

�(β + 1)

≥ |v0| − M.
(s0 − u)β

�(β + 1)
Cs0 ≥ |v0| − Cv0 ≥ a

Thus, Gv ∈ [a, b] for every v ∈ C�.
Currently, for every u1, u2 ∈ I, we get

|(Gv)(u1) − (Gv)(u2)| ≤
∣∣∣∣
∫ u1

s0

(u − μ)β−1

�(β)
g(μ, v(μ), v(ξμ), v′(μ))dμ

∣∣∣∣
−

∣∣∣∣
∫ u2

s0

(u − μ)β−1

�(β)
g(μ, v(μ), v(ξμ), v′(μ))dμ

∣∣∣∣
≤

∣∣∣∣
∫ u2

u1

(u − μ)β−1

�(β)
g(μ, v(μ), v(ξμ), v′(μ))dμ

∣∣∣∣

≤ M.
|uβ

1 − uβ
2 | + 2|u1 − u2|β
�(β + 1)

≤ 2M.
|u1 − u2|β
�(β + 1)

≤ �.
|u1 − u2|β
�(β + 1)

Hence, Gv ∈ C� for every v ∈ C�. In the same way which we treat cases (2) and (3).
Then G is a self-mapping of C� (i.e. G : C� → C�).
We proceed to show that G is non-expansive operator. Let v,w ∈ C� and u ∈ [a, b],

therefor

|(Gv)(u) − (Gw)(u)| ≤
∣∣∣∣
∫ u

s0

(u − μ)β−1

�(β)
[g(μ, v(μ), v(ξμ), v′(μ))

−g(μ,w(μ),w(ξμ),w′(μ))]dμ
∣∣

≤
∣∣∣∣
∫ u

s0
�1

(u − μ)β−1

�(β)
[|v(μ) − w(μ)| + |v(ξμ) − w(ξμ)|

+ ∣∣v′(μ) − w′(μ)
∣∣]dμ

∣∣
≤ 3

(B)β

�(β + 1)
.�1.Cs0 . ‖v − w‖ .
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Presently taking the norm, we obtain

‖Gv − Gw‖ ≤ 3
(B)β

�(β + 1)
.�1.Cs0 . ‖v − w‖ ,

which in virtue of the condition (5), shows that G is the non expansive operator therefore
continues. It is to apply the fixed point theorem of Browder–Ghode–Kirk and obtain the first
part of the conclusion and the Corollary 6 or 7 for the second one.

Currently, applying that the same technique in theorem (3.1) with additional iterative
differential equation extending problem (7), and we put one assumption for Eq. (7) is v(s) =
η.s in (19), we have

Dβv(s) = g(s, v(s), v(v(s)), v′(s))
v(s0) = v0 (14)

in which s0, v0 ∈ I , η ∈ (0, 1) and g ∈ C(I × I × I × I )are given to. We make the second
output of the existence solutions of the initial value problem (14) in the C�.

Theorem 9 Suppose the following conditions for the initial value problem (14) are satisfied

(1) g ∈ C(I × I × I × I ),
(2) there is �1 > 0 so that

g(χ,ϒ1, z1,�1)−g(χ,ϒ2, z2,�2)| ≤ �1[|ϒ1−ϒ2|+|z1−z2|+|�1−�2|] (15)

for every χ,ϒ j , z j ,� j ∈ I, j = 1, 2,
(3) if � is the constant of Lipschitz involved in (15), therefore

M = max {|g(χ,ϒ, z,�)| : (χ,ϒ, z,�) ∈ [a, b]} ≤ �

2
,

(4) One of these conditions are achieved:

(i)
M.Bβ

�(β + 1)
.Cs0 ≤ Cv0 , where B = max[a, b]

(i i) s0 = 0, M
(B)β

�(β + 1)
≤ b − v0, g(χ,ϒ, z,�) ≥ 0, ∀(χ,ϒ, z,�) ∈ I,

(i i i) s0 = b, M
(B)β

�(β + 1)
≤ v0 − a, g(χ,ϒ, z,�) ≥ 0, ∀(χ,ϒ, z,�) ∈ I,

(5) �1 · (B)β

�(β+1) · [3 + �].Cs0 ≤ 1

Next the problem (14) having at least one solution in C�, that may be approximated by
iteration Krasnoselskij

vm+1(u) = (1 − η)vm(u) + ηv0 + η

∫ u

s0

(u − μ)β−1

�(β)
g(μ, vm(μ), v(vm(μ)), v′

m(μ))dμ,

u ∈ [a, b], m ≥ 1, u > μ and where η ∈ (0, 1) and v1, v
′
1 ∈ C� is arbitrary.

Proof Consider the operator of integral G : C� → C[I ] introduced by

(Gv)(u) = v0 +
∫ u

s0

(u − μ)β−1

�(β)
g(μ, v(μ), v(v(μ)), v′(μ))dμ, u ∈ I, u > μ
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Similarly as in the Theorem 8, we show which C� is an invariable set with regard to G,
meaning that G(C�) ⊂ C�. We conclude

|(Gv)(u)| ≤ |v0| +
∣∣∣∣
∫ u

s0

(u − μ)β−1

�(β)
g(μ, v(μ), v(v(μ)), v′(μ))dβ

∣∣∣∣ ≤ |v0| + M
(s0 − u)μ

�(μ + 1)
≤ b

|(Gv)(u)| ≥ |v0| −
∣∣∣∣
∫ u

s0

(u − μ)β−1

�(β)
g(μ, v(μ), v(v(μ)), v′(μ))dμ

∣∣∣∣ ≥ |v0| − M
(s0 − u)β

�(β + 1)

≥ |v0| − M.
(s0 − u)β

�(β + 1)
Cs0 ≥ |v0| − Cv0 ≥ a

Thus, Gv ∈ I for every v, v′ ∈ C�.
Currently, for every u1, u2 ∈ I we get

|(Gv)(u1) − (Gv)(u2)| ≤
∣∣∣∣
∫ u1

s0

(u − μ)β−1

�(β)
g(μ, v(μ), v(v(μ)), v′(μ))dμ

∣∣∣∣
−

∣∣∣∣
∫ u2

s0

(u − μ)β−1

�(β)
g(μ, v(μ), v(v(μ)), v′((μ)))dμ

∣∣∣∣
≤

∣∣∣∣
∫ u2

u1

(u − μ)β−1

�(β)
g(μ, v(μ), v(v(μ)), v′(μ))dμ

∣∣∣∣

≤ M.
|uβ

1 − uβ
2 + 2(u1 − u2)β |
�(β + 1)

≤ 2M.
|u1 − u2|β
�(β + 1)

≤ �.
|u1 − u2|β
�(β + 1)

Hence, Gv ∈ C� for every v, v′ ∈ C�. In the same way which we treat cases (2) and (3).

Then G is a self-mapping of C�(i.e. G : C� → C�).
We show that G is non-expansive operator. Let v,w ∈ C� and u ∈ I . Therefore

|(Gv)(u) − (Gw)(u)| ≤
∫ u

s0

∣∣∣∣ (u − μ)β−1

�(β)
[g(μ, v(μ), v(v(μ)), v′(μ))

−g(μ,w(μ),w(w(μ)),w′(μ))]∣∣ dμ

≤
∫ u

s0
�1

(u − μ)β−1

�(β)
[|v(μ) − w(μ)| + |v(v(μ)) − w(w(μ))| + ∣∣v′(μ) − w′(μ)

∣∣ dμ

≤
∫ u

s0
�1

(u − μ)β−1

�(β)
[|v(μ) − w(μ)| + |v(v(μ)) − w(w(μ)) + v(w(μ)) − v(w(μ))|

+ ∣∣v′(μ) − w′(μ)
∣∣ dμ

≤
∫ u

s0
�1

(u − μ)β−1

�(β)
[|v(μ) − w(μ)| + |v(v(μ)) − v(w(μ))| + |v(w(μ)) − w(w(μ))|

+ ∣∣v′(μ) − w′(μ)
∣∣ dμ

≤ �1

∫ u

s0

(u − μ)β−1

�(β)
[|v(μ) − w(μ)| + �. |v(μ) − w(μ)| + |v(w(μ)) − w(w(μ))|

+ ∣∣v′(μ) − w′(μ)
∣∣ dμ

≤ �1
(B)β

�(β + 1)
.[2 + �]. |s0 − u|β

�(β + 1)
. ‖v − w‖ ≤ �1.

(B)β

�(β + 1)
.[3 + �].Cs0 . ‖v − w‖
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Presently taking the norm, we obtain

‖Gv − Gw‖ ≤ �1.
(B)β

�(β + 1)
.[3 + �].Cs0 . ‖v − w‖

that, considering the condition (5), shows that G is the non expansive operator therefore
continues. In view of the fixed point theorem of Browder–Ghode–Kirk and have the first part
of the conclusion and the Corollary 6 or 7 for the second one.

Applications

Consider the problem of initial value as a result liked with an fractional first iterative order
differential equation involving first derivatives

Example

Consider the initial value problem

D
1
2 v(s) = −3 + v(s) + v(v(s)) + v′(s)

v(1/2) = 1 (16)

in which s ∈ [0, 1], and v, v′ ∈ C3, 12 ([0, 1] × [0, 1] × [0, 1].
Consider v, v′ ∈ C3, 12 ([0, 1] × [0, 1] × [0, 1] belonging to the set

C3, 12
=

{
v ∈ C3,([0, 1] × [0, 1] × [0, 1] : |v(u1) − v(u2)| ≤ 3

|u1 − u2|0.5
�(1.5)

}

for any u1, u2 ∈ [0, 1] that, in given our notes, that means � = 3, we obtain

a = 0, b = 1, s0 = 1 hence Cs0 = max {s0 − a, b − s0} = 1, max {0, 1} = 1,

�(1.5) = 0.8862269255.

The function

g(s, y, z, w) = −3 + 0.1477044876 [y + z + w]
is Lipschitzian with the Lipschitz constant �1 = 0.1477044876. Then, we obtain

�1
1

0.8862269255
[3 + �] Cs0 = 1,

therefore the condition (5) in Theorem 9 is satisfied. It is also noted that v(s) = 1, v′, (s) =
1 s ∈ [0, 1] is a solution to the initial- value problem (16). From Theorem 9 initial- value
problem (16) having at least one solution in C3, can be approximated as iteration Krasnosel-
skji

vm+1(u) = (1 − σ)vm(u) + σv0 + σ

∫ u

s0

(u − β)γ−1

�(γ )
(−3 + vm(β)

+vm(vm(β)) + v′
m(β))dβ,

u ∈ [a, b], m ≥ 1, u > β and where σ ∈ (0, 1) and v1, v
′
1 ∈ C� is arbitrary.
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Example

Consider the initial value problem

cD
2
3 v(s) = −1 + v(s) − v(v(s)) + v′(s)

v

(
1

2

)
= 1

2
, (17)

in which s ∈ [0, 1], and v, v′ ∈ C4, 23 ([0, 1] × [0, 1] × [0, 1].
Assume that v, v′ ∈ C4, 23 ([0, 1] × [0, 1] × [0, 1]) belonging to the set

C4, 23
=

{
v ∈ C4, 23 ([0, 1] × [0, 1] × [0, 1] : |v(u1) − v(u2)| ≤ 4.

|u1 − u2| 23
�( 23 + 1)

}

for any u1, u2 ∈ [0, 1] that, in given our notes, that means � = 4, we lead to

a = 0, b = 1, s0 = 0.5 hence Cs0 = max {s0 − a, b − s0} = 0.5, max {0, 1} = 1,

�

(
2

3
+ 1

)
= 2

3
.�

(
2

3

)
.

The function

g(s, y, z, w) = −1 + 2�
( 2
3

)
9

[y + z + w]

is Lipschitzian with the Lipschitz constant �1 = 2�( 23 )

9 . Then, we have

�1
1

2
3 .�

( 2
3

) [3 + �].Cs0 = 1,

thus, the condition (5) in Theorem 9 is satisfied. It is, also noted that v(s) = 1
2 , v

′(s) =
−1, s ∈ [0, 1] is a solution to the initial- value problem (17). By Theorem 9 initial- value
problem (17) having at least one solution inC5, can be approximated as iterationKrasnoselskji

vm+1(u) = (1 − σ)vm(u) + σv0 + σ

∫ u

s0

(u − β)γ−1

�(γ )
(−1 + vm(β) − vm(vm(β))

+v′
m(β))dβ,

u ∈ [a, b], m ≥ 1, u > β and where σ ∈ (0, 1) and v1, v
′
1 ∈ C� is arbitrary.

Conclusion

From above, we conclude that the iterative differential equations can be extended into frac-
tional differential equation including the first order derivative. Moreover, as future work, one
can investigate the existence of second order derivative such as

Dγ v(s) = f (s, v(s), v(ξ1s), v′(ξ2s), v′′(ξ3s))
v(s0) = v0, v

′(s0) = v′
0, v

′′(s0) = v′′
0 .

, (18)

or
Dγ v(s) = f (s, v(s), v(ξ1s), v′(ξ2s), v′′(ξ3s)))

v(s0) = v0, v
′(s0) = v′

0, v
′′(s0) = v′′

0 .
(19)
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