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ABSTRACT 

The fact of convection is one of the most remarkable problems in fluid dynamics. In this 

paper we shall study the case of over-stability mode of linear stability of rotating 

electrically conducting viscous layer heated from below lying in a uniform magnetic field 

based on the Boussinesq approximation. We shall follow the same analysis used in previous 

paper when we analyses the case of stationary convection of linear stability at the onset of 

rotating convection in the presence of magnetic field, so we restrict our study to the case 

when the direction of magnetic field and rotation are parallel; the discussion is focused on 

the case of large Taylor number T  and Chandrasekhar number
Q

. Generally, we have seen 

early in a rotating and magnetic convection that thermal stability sets mostly as over 

stability [11], when we combine rotation and magnetic field the manner of the instability 

behaves in a complicated way depending on four dimensionless numbers T , 
Q

, Pr  and 

mPr
 [11]. We shall study the over-stability case seeking the nature of the dependence of 

these dimensionless numbers. 

Keywords: Chandrasekhar Number Q , Convection, Rotating Convection, Magnetic Field, 

Rayleigh Number Ra , Over-Stability convection, Taylor Number T ,  Prandtl number 

Pr  , Prandtl  magnetic number mPr . 

1.  INTRODUCTION 

This paper considers as a future study of a previous paper which is “The 

linear stability at the onset of rotating convection in the presence of 

magnetic field” [11]. In this paper, we shall study the over-stability mode of 

linear stability convection in the presence of magnetic field, following 

Rayleigh's ideas. We will analyze the over-stable mode of rotating 

convection in the presence of magnetic following the same analysis process 
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used in analyzing the stationary convection, the governing equations 

required are: momentum equation added Lorentz force and Coriolis force 

for incompressible fluid (1), the heat equation (2), the induction equation 

with constant magnetic diffusivity (3) and the continuity equation (4). 
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2.THE BASIC PROBLEM AND THE PROCESS OF 

SOLUTION 

The steps used in finding solution to the governing equations at the case of 

over-stable mode are exactly the same steps used in finding solutions in the 

case of stationary convection, so due to the limit time of the research we 

shall call the dispersion equation (32) in our previous paper “The linear 

stability at the onset of rotating convection in the presence of magnetic 

field” [11]. We shall study the over-stability case seeking the nature of the 

dependence of four dimensionless numbersT ,Q , Pr  and mPr  in two special 
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cases, when 025.0Pr  and 0Pr m and Pm = 0 and when 6185.0Pr  and 

1.0Pr m . Returning back to the dispersion equation (5), 
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Seeking a solution to the case of free boundaries adjoining a non-conducting 

medium of the form: 

 zWW sin0
 

Substituting this solution into equation (5), we obtain 
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At the onset of oscillatory instability, is  ,  where R , substitute for 

s  in equation (6), (i.e. take + sign for s), so we obtain:
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Then equation (7) becomes: 
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This simplifies to : 
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Taking the real and imaginary parts of equation (9), we obtain: 
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For assigned values for 
1T  and

1Q , equations (10) and (11) define R  as a 

function of x , the minimum value of this function determine the critical 

value of Rayleigh number for oscillatory convection, comparing this value 

with critical Rayleigh value at the onset of stationary convection determines 

the manner in which instability first set, which will depend on the minimum 

of the two critical Rayleigh number.

 

Looking at equation (11), if 1Pr   and mPrPr  , the left hand side will be 

positive, so equation (11) never be satisfied, so 2

1 must be zero, so no 

possibility of over-stability at this case. Chandrasekhar did only the case for 

mercury when 025.0Pr  and mPr  close to zero, in the next section; we 

shall discuss when over-stability sets for special case of liquid metals such 

as mercury. Moreover, we shall study the over-stability mode when 

6185.0Pr   and 1.0Pr m , which considers a special case where the 

critical values of Rayleigh numbers are equals at stationary and oscillatory 

convection for 1001 Q  and .106

1 T  

3. AN APPROXIMATE SOLUTION TO LIQUID 

METALS 

Equation (10) and equation (11) can be simplified when applied on liquid 

metals such as mercury; this simplification mainly depends on the value of 
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mPr which is very small, for example for mercury, the value of Prandtl and 

Prandtl magnetic number are: 

   101.5Pr       ,025.0Pr -7

m   

According to this work, we can neglect mPr in comparison with Pr, therefore 

equation (10) and (11) become: 
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Equations (12) and equation (13) can be combined to give  
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Equations (12) and (13) can be solved numerically using Maple program to 

determine the critical numbers for the onset of over-stability for various 

values of 1T  and 1Q . Numerical solutions showed that cRa increases 

monotonically as 1Q increases (i.e. see tables 1-3). 
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TABLE 1. THE CRITICAL WAVE NUMBER WITH CRITICAL RAYLEIGH NUMBER 

FOR 
410T  

1Q
 

Wave number a 
cRa  

2

1  

10 4.56 7052.97 1.79 

50 5.06 14744.12 1.17 

100 6.63 35402.31 0.57 

150 7.20 50155.6 0.21 

 

TABLE 2. THE CRITICAL WAVE NUMBER WITH CRITICAL RAYLEIGH NUMBER 

FOR 
610T  

1Q
 

Wave number a 
cRa  

2

1  

10 8.35 36497.34 73.10 

100 9.78 70718.21 52.97 

500 11.54 510893.1   
34.90 

1000 12.64 510271.3   
25.63 

 

TABLE 3. THE CRITICAL WAVE NUMBER WITH CRITICAL RAYLEIGH NUMBER 

FOR 
1010T  

1Q
 

Wave number a 
cRa  

2

1  

100 37.7 710254.1   
40975.90 

1000 38.4 710305.1   
39504.63 

10000 41.9 710720.1   
33209.84 

100000 50.1 710576.4   
21300.92 

 

4. PREFERRED MODE OF INSTABILTIY WHEN 

025.0Pr  AND 0Pr m   

Now, we shall investigate which mode of instability preferred for liquid 

metals. Figure (1-3) show that for 1001 Q , oscillatory convection is always 

preferred to stationary convection.  
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Figure 1. Stationary convection and oscillatory convection for 

4

11 10  ,100  TQ
 

 

 

 

 

Figure 2. Stationary and oscillatory convection for 
6

11 10  ,100  TQ  
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Figure 3. Stationary and oscillatory convection for 
8

11 10  ,100  TQ  

 

 

Comparing values of cRa  at stationary and oscillatory convection from 

tables (3)-(6), it is clear that the oscillatory mode is the preferred mode until 

1Q  reaches a specific value where oRa becomes larger than sRa  , then the 

preferred mode of instability is the stationary mode. 

For example when 6

1 10T  and at 22.16611 Q , we have so RaRa   which 

is marginal stable, thus for 22.16611 Q , the preferred mode of instability is 

oscillatory mode where so RaRa  , and if 22.16611 Q , then the stationary 

mode is the preferred mode. Similarly for 8

1 10T and 10

1 10T (See figures 

4, 5 and 6). 



Journal of Applied Science  (JAS)                                                          Vol.(35) No.(1),  June 2022 

 

 

11 

 

Figure 4.  Plot of oRa (Red line) and sRa (green line) and for 10001 Q  , over-stability is 

preferred. 

 

 

Figure 5. Plot of oRa (Red line) and sRa (green line) and for 22.16611 Q , marginal 

stability occurred. 
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Figure 6. Plot of oRa (Red line) and sRa (green line) and for 20001 Q , stationary 

convection is preferred. 

 

TABLE 4.  A CRITICAL VALUES OF oRa AND sRa  FOR 
610T AND VARIOUS 

VALUES OF 
1Q  

1Q
 oRa  1sRa  2sRa  

210  
410072.7   

610885.1   
610760.3   

310  
510893.1   

510664.5   
610747.1   

1661.22 510064.5   
510064.5   

- 

410  
710720.1   

6102.1   
- 

610  
710576.4   

- 610928.9   

810  
3210023.1   

- 910781.9   

 

 TABLE 5.  A CRITICAL VALUES OF oRa AND sRa  FOR 
810T AND VARIOUS 

VALUES OF 
1Q  

1Q
 oRa  1sRa  2sRa  

210  
510492.6   

710976.3   
- 

310  
610020.1   

710976.3   
710900.3   

410  
710642.3   

- 610676.5   

15396 610087.5   
610087.5   

- 

4105  
710422.1   

610250.7   
- 
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TABLE 6.  A CRITICAL VALUES OF oRa AND sRa  FOR 
1010T AND VARIOUS 

VALUES OF 
1Q  

1Q
 oRa  1sRa  2sRa  

210  
710254.1   

810550.8   
- 

310  
710305.1   

810549.8   
- 

410  
710720.1   

- 810914.3   

124718.7 710273.5   
710274.5   

810407.1   

610  
810837.2   

- 810189.1   

5. AN APPROXIMATE SOLUTION TO THE DISPERSION 

RELATION FOR 6185.0Pr   AND 1.0Pr m  

In this section we shall investigate an approximate solution to the dispersion 

relation for the over-stability mode for 6185.0Pr   and 1.0Pr m , the 

Maple program runs for any values of Pr  and mPr , but due to the time limit  

of the research we shall only consider the case when 6185.0Pr  and 

1.0Pr m , because it gives the same critical Rayleigh number at stationary 

and oscillatory modes for 1001 Q  and 6

1 10T , discussing the manner of 

the critical Rayleigh values for large 1T  and various value of 1Q , moreover 

we shall discuss the preferred mode of instability. 

Numerical solutions of equations (10) and (11) for 6185.0Pr   and 

1.0Pr m  only exists when 
1Q  is small for 65

1 10  & 10T   and cRa

increases monotonically with 1Q , tables (7)-(9) give the critical values of the 

wave-number ca  and cRa  for various values of 1T  and 1Q . 
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TABLE 7. THE CRITICAL WAVE NUMBER WITH CRITICAL RAYLEIGH NUMBER 

FOR 
510T , 6185.0Pr  AND 1.0Pr m  

1Q
 

Wave number a 
cRa  

2

1  

10 19.246 510005.4   
676.594 

30 19.844 510166.4   
474.920 

50 20.374 510307.4   
292.098 

80 21.084 510481.4   
41.763 

 

TABLE 8. THE CRITICAL WAVE NUMBER WITH CRITICAL RAYLEIGH NUMBER 

FOR 
610T , 6185.0Pr  AND 1.0Pr m  

1Q
 

Wave number a 
cRa  

2

1  

50 42.097 610813.1   
3213.058 

100 42.827 610856.1   
2683.908 

200 44.141 610928.1   
1715.104 

400 46.382 610044.2   
11.169 

 

TABLE 9. . THE CRITICAL WAVE NUMBER WITH CRITICAL RAYLEIGH NUMBER 

FOR 
810T , 6185.0Pr  AND 1.0Pr m  

1Q
 

Wave number a 
cRa  

2

1  

50 193.687 710747.3   
82748.247 

100 193.869 710751.3   
82144.707 

500 195.297 710787.3   
77404.278 

1000 197.013 710831.3   
71681.474 

 

6. PREFERRED MODE OF INSTABILITY WHEN 6185.0Pr 

AND 1.0Pr m  

Now, we shall investigate which mode of instability preferred for 

6185.0Pr   and 1.0Pr m .Comparing the critical values of Rayleigh 

number at stationary and oscillatory convection from table (10), when 



Journal of Applied Science  (JAS)                                                          Vol.(35) No.(1),  June 2022 

 

 

15 

5

1 10T , 1001 Q  is the marginal state, and for 1001 Q  the preferred 

mode of instability is the oscillatory mode where so RaRa  , while if 

1001 Q , the stationary mode is the preferred mode. The same situation 

applied for 
6

1 10T and 
8

1 10T  (i.e. see tables (11) and (12)). 

TABLE 10.  A CRITICAL VALUES OF oRa
AND sRa

 FOR 
510T , 6185.0Pr   

AND 
1.0Pr m  

1Q
 oRa  1sRa  2sRa  

10 510005.4   
- 510067.4   

17 510064.4   
- 510060.4   

50 510307.4   
510261.7   

510028.4   

80 510481.4   
510781.4   

510998.3   

  

TABLE 11. .  A CRITICAL VALUES OF oRa
AND sRa

 FOR 
610T , 6185.0Pr   

AND 
1.0Pr m  

1Q
 oRa  1sRa  2sRa  

50 610813.1   
610174.7   

610860.1   

100 610854.1   
610760.3   

610855.1   

200 610929.1   
610948.1   

610845.1   

400 610044.2   
610041.1   

610824.1   

 

TABLE 12. A CRITICAL VALUES OF oRa
AND sRa

 FOR 
810T , 6185.0Pr   

AND 
1.0Pr m  

1Q
 oRa  1sRa  2sRa  

50 710747.3   
710164.7   

710976.3   

100 710751.3   
810740.3   

710976.3   

1000 710831.3   
710900.3   

710976.3   
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1017 710832.3   
710836.3   

710967.3   

5000 710132.4   
610733.8   

- 

 

7. SUMMARY AND CONCLUSION  

 

At over-stability convection, a numerical solution is obtained for liquid 

metals such as mercury, and it showed that cRa  increases monotonically 

with 
1Q  and 

1T . For a given value of
1T , instability will set in as over-

stability until 
1Q  reaches a specific value where so RaRa  , then for 

1Q   

less than this value, oscillatory mode is preferred, otherwise stationary mode 

is preferred.[1] 

When 6185.0Pr   and 1.0Pr m , over-stability only exists for 
1Q  small 

contrary to liquid metals. However,  cRa  increases monotonically with 
1Q

and the preferred mode of instability is oscillatory mode until 
1Q  reaches a 

specific value where so RaRa  , then for 1Q   less than this value, 

oscillatory mode is preferred, otherwise stationary mode is preferred. 
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