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An important application of DNA microarray data is cancer classification. Because of the high-dimensionality

problem of microarray data, gene selection approaches are often employed to support the expert systems in

diagnostic capability of cancer with high classification accuracy. Penalized logistic regression using the least

absolute shrinkage and selection operator (LASSO) is one of the key steps in high-dimensional cancer clas-

sification, as gene coefficient estimation and gene selection simultaneously. However, the LASSO has been

criticized for being biased in gene selection. The adaptive LASSO (APLR) was originally proposed to overcome

the selection bias by assigning a consistent weight to each gene. In high-dimensional data, however, the adap-

tive LASSO faces practical problems in choosing the type of initial weight. In practice, the LASSO estimator

itself has been used as an initial weight. However, this may not be preferable because the LASSO is inconsis-

tent in itself. To address this issue, an alternative initial weight in adaptive penalized logistic regression (CB-

PLR) is proposed. The effectiveness of the CBPLR is examined on three well-known high-dimensional cancer

classification datasets using number of selected genes, area under the curve, and misclassification rate. The

experimental results reveal that the proposed CBPLR is quite efficient and feasible for cancer classification.

Additionally, the proposed weight is compared with APLR and LASSO and exhibits competitive performance

in both classification accuracy and gene selection. The proposed CBPLR has significant impact in penalized

logistic regression by selecting fewer genes with high area under the curve and low misclassification rate.

Thus, the proposed weight could conceivably be used in other research that implements gene selection in the

field of high dimensional cancer classification.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Cancer is a term that refers to uncontrolled cellular division,

growth and spread of abnormal cells. It can occur in all body parts.

According to the world health organization, cancer is a disease that

threatens human lives and causes the second highest rate of death

globally. In cancer treatment or therapy, the classification of normal

and abnormal patterns of the cells is one of most important and sig-

nificant processes during the diagnosis of cancer. Recently, the use

of expert classifier systems in cancer diagnosis is increasing (Akay,

2009). One of the major goal of these expert systems is to extract

the useful knowledge from past diagnosis database. With the fast

development and widely used of the DNA microarray technology in

cancer research, a highly accurate expert classifier system is needed

(Du, Li, Li, & Fei, 2014; Zheng, Chong, & Wang, 2011). DNA microar-

ray technology allows producing of thousands of genes. Dealing with

all produced genes by an expert classifier system is a challenging and
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ime consuming task. Therefore, selecting irrelevant genes is an im-

ortant part in order to support the expert classifier system in high-

imensional cancer classification.

One of the properties of microarray data is that the number

f genes, p, exceeds the number of tissues (patients), n (Alonso-

onzález, Moro-Sancho, Simon-Hurtado, & Varela-Arrabal, 2012; Cui,

heng, Yang, & Sha, 2013; Kalina, 2014; Ma & Huang, 2008). Deal-

ng with the situation p > n, which is commonly known as high-

imensional data, poses a challenging task in the application of the

tatistical classification methods (Piao, Piao, Park, & Ryu, 2012). Over-

tting and multicollinearity are the most common problems that

rise in high-dimensional data when applying statistical classifica-

ion methods. These issues make statistical microarray classification

ethods very difficult (Chen, Wang, Wang, & Angelia, 2014; Pang,

avukkala, Hu, & Kasabov, 2007; Peng, Fu, Liu, Fang, & Jiang, 2013).

From the biological perspective, only a small subset of genes is

trongly indicative of a targeted disease, and most genes are irrel-

vant to cancer classification. The irrelevant genes may introduce

oise and decrease the classification accuracy (Chandra & Gupta,

011). Moreover, from the statistical perspective, too many genes

ay lead to overfitting and can negatively influence the classification
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erformance (Liang et al., 2013). Due to the significance of these prob-

ems, effective gene selection methods are desirable to help to classify

he different cancer types and improve prediction accuracy. Conse-

uently, removing irrelevant and noisy genes is an important target

hen dealing with high-dimensional cancer classification. In princi-

le, gene selection aims to select a relatively small set of genes from

high-dimensional gene dataset, and, therefore, achieves high clas-

ification accuracy (Lei, Yue, & Berens, 2012; Pang, George, Hui, &

iejun, 2012). Furthermore, selecting important genes can also help

n early diagnosis and drug discovery for cancer patients (Chen et al.,

014). Numerous statistical methods have been successfully applied

n the area of cancer classification. Among them, logistic regression

LR) is considered as a powerful discriminative method. LR provides

he predicted probabilities of class membership and easy interpreta-

ion of the gene coefficients (Liang et al., 2013). However, LR is nei-

her applicable nor suitable for the high-dimensional cancer classifi-

ation, because the Hessian matrix will not have full rank (Kastrin &

eterlin, 2010). Thus, the iteration methods such as Newton–

aphson’s method cannot work (Bielza, Robles, & Larrañaga, 2011).

Recently, there has been growing interest in applying the penal-

zed methods in high-dimensional cancer classification (Bielza et al.,

011; Bootkrajang & Kabán, 2013; Nan et al., 2012; Zou et al., 2015).

o tackle both estimating the gene coefficients and performing gene

election simultaneously, penalized logistic regression (PLR) was suc-

essfully applied in high-dimensional cancer classification (Cawley

Talbot, 2006; Li & Eng Chong, 2005; Shevade & Keerthi, 2003;

henqiu et al., 2007; Zhu & Hastie, 2004). A PLR with different penal-

ies can be applied. The most widely and popular penalty is the

1-penalty, which is known as the least absolute shrinkage and se-

ection operator (LASSO; Tibshirani, 1996). The LASSO imposes the

1-penalty to the loss function. Because of the L1-penalty property,

he LASSO can perform variable selection by assigning some gene co-

fficients to zero. For this reason, the LASSO obtains its popularity in

igh dimensional data. SLR with L1-penalty gives a sparse solution

ith high classification accuracy.

Despite the advantage of the LASSO, it has three shortcomings

Wang, Nan, Rosset, & Zhu, 2011; Zheng & Liu, 2011). First, it can-

ot select more genes than the number of tissues. Second, in mi-

roarray gene data, there is grouping among genes, where genes that

hare a common biological pathway have a high pairwise correlation

ith each other. The LASSO tries to select only one gene or a few of

hem among a group of correlated genes. To overcome the first two

imitations, Zou and Hastie (2005) proposed the elastic net penalty,

or which the penalty is a linear combination of L1-penalty and L2-

enalty. Last, the LASSO has a bias in gene selection, because it penal-

zes all the gene coefficients equally (Fan, Fan, & Barut, 2014). In other

ords, the LASSO does not have the oracle properties, which refer to

he probability of selecting the right set of genes (with nonzero co-

fficients) converges to one, and that the estimators of the nonzero

oefficients are asymptotically normal with the same means and co-

ariances as if the zero coefficients are known in advance (Fan & Li,

001).

In relation to the last limitation of the LASSO, the oracle prop-

rties, Zou (2006) proposed the adaptive LASSO in which the adap-

ive weights are used for penalizing different coefficients in the L1-

enalty. In high-dimensional classification data, however, the adap-

ive LASSO faces practical problems in choosing the type of initial

eight. As a result, the LASSO estimator itself has been used as an

nitial estimator in solving the adaptive LASSO (Bühlmann & Van De

eer, 2011; Lin, Xiang, & Zhang, 2009). In fact, using the LASSO esti-

ator in the adaptive LASSO when p > n may not be preferable for

wo reasons. First, LASSO estimator is inconsistent in itself. In other

ords, this initial weight is biased in selecting genes. Second, it does

ot take into account the weights for all the genes in any implanta-

ion, which means, some genes will be selected and the others will

e set to zero.
 w
In this study, correlation-based weight is proposed as an alterna-

ive initial weight inside the L1-penalty in penalized logistic regres-

ion (CBPLR). The main objective behind this new initial weight is

o adjust the L1-penalty in the PLR by improving consistent genes

election (oracle property). The main aim of this study is to show

he effectiveness of the proposed weight for the gene selection in

igh-dimensional cancer classification. The computational effective-

ess of the proposed weight is compared with the performance of the

ASSO and the adaptive LASSO on three benchmark gene expression

atasets. It is observed that the proposed weight outperformed the

ther two methods in terms of classification accuracy and the num-

er of selected genes.

The remainder of this paper is arranged as follows: Several re-

ated papers are listed in Section 2. The methodology applied in this

tudy is detailed in Sections 3 and 4. In Section 5, the experimental

tudy is carried out, including a description of the dataset and a dis-

ussion of the main results. Finally, the main conclusion is drawn in

ection 6.

. Related work

Among existing expert classifier systems in high-dimensional

ancer classification, PLR has demonstrated its capability in provid-

ng an easily interpretable expert system with a highly classification

ccuracy. This paper is developed independently, although, in some

spects, it is related to other papers (Cawley & Talbot, 2006; Li & Eng

hong, 2005; Shevade & Keerthi, 2003; Zhenqiu et al., 2007; Zhu &

astie, 2004).

Shevade and Keerthi (2003) proposed new algorithm based on

he Gauss–Seidel method in solving PLR with application in gene

election in microarrays cancer classification data. Zhu and Hastie

2004) proposed PLR as an alternative classification method to

upport vector machine in microarray cancer classification to take

nto account probability estimation. Li and Eng Chong (2005) com-

ined two dimension reduction methods, singular value decompo-

ition and partial least squares, with PLR to enhance the classifica-

ion accuracy and computational speed. Fort and Lambert-Lacroix

2005) proposed to combine the partial least squares and ridge PLR.

he classification performance is illustrated on leukemia, colon and

rostate datasets. An extension of PLR was proposed by Kim, Kwon,

nd Heun Song (2006) to deal with multi-class microarrays can-

er classification. Cawley and Talbot (2006) proposed to use PLR

ith Bayesian regularization in gene selection for cancer classifi-

ation data. Zhenqiu et al. (2007) proposed a novel method that

ombine the PLR with non-convex penalty in cancer classification

ata.

Bielza et al. (2011) presented a new PLR method based on the

volution of the regression coefficients using estimation of distribu-

ion algorithms. The main contribution is to avoid the determina-

ion of the penalization term in gene selection. An improvement of

LMNET algorithm for L1-PLR was proposed by Yuan, Ho, and Lin

2012) to address some theoretical and implementation issues of the

LMNET.

Liang et al. (2013) proposed and investigated a novel PLR with L1/2

enalty for gene selection in cancer classification data. Bootkrajang

nd Kabán (2013) utilized PLR to detect mislabeled arrays using

ayesian regularization. Vincent and Hansen (2014) proposed new

lgorithm to solve penalized group LASSO using multinomial logis-

ic regression to deal with multi-class classification.

. Penalized logistic regression

Logistic regression is a statistical method to model a binary clas-

ification problem. The regression function has a nonlinear relation

ith the linear combination of the genes. In cancer classification,
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the response variable of the logistic regression has two values ei-

ther 1 for the tumor class or 0 for the normal class. Let yi ∈ {0, 1}

be a vector of size n × 1 of tissues, and let xi be a p × 1 vector of

genes. The logistic transformation of the vector of probability esti-

mates πi = p(yi = 1|xi) is modeled by a linear function, logit trans-

formation:

ln

[
πi

1 − πi

]
= β0 +

p∑
j=1

xi j
Tβ j, i = 1, 2, . . . , n, (1)

where β0 is the intercept and β j is a p × 1 vector of unknown gene

coefficients. The log-likelihood function of Eq. (1) is defined as:

�(β0, β) =
n∑

i=1

{yi ln (πi) + (1 − yi) ln (1 − πi)}. (2)

Logistic regression offers the advantage of simultaneously estimating

the probabilities π i and 1 − πi for each class and classifying subjects.

The probability of classifying the ith sample in class 1 is estimated

byπ̂i = exp (β0 + ∑p
j=1

xi j
T β j)/1 + exp (β0 + ∑p

j=1
xi j

T β j). The pre-

dicted class is then obtained by I{π̂i > 0.5}, where I( · ) is an indicator

function.

PLR adds a nonnegative penalty term to Eq. (1), such that the size

of the gene coefficients in high-dimension cancer classification can

be controlled. Several penalty terms have been discussed in the lit-

erature (Hoerl & Kennard, 1970; Liang et al., 2013; Tibshirani, 1996;

Zhenqiu et al., 2007). The L1-penalty, proposed by Tibshirani (1996),

is one of the popular penalty terms. The L1-penalty performs genes

selection and estimation simultaneously by constraining the log-

likelihood function of gene coefficients. The penalized method for the

logistic regression is obtained by adding the penalty term to the neg-

ative log-likelihood function:

PLR = −
n∑

i=1

{yi ln (πi) + (1 − yi) ln (1 − πi)} + λP(β). (3)

The estimation of the vector β is obtained by minimizing Eq. (3):

β̂PLR = arg min
β

[
−

n∑
i=1

{yi ln (πi) + (1 − yi) ln (1 − πi)} + λ P(β)

]
,

(4)

where λ P(β) is the penalty term that penalizes the estimates. The

penalty term depends on the positive tuning parameter, λ, which

controls the tradeoff between fitting the data to the model and the

effect of the penalty. In other words, it controls the amount of shrink-

age. For λ = 0, we obtain the MLE solution, while for large values of

λ the influence of the penalty term on the coefficient estimates in-

creases. Choosing the tuning parameter is an important part of the

model fitting. If we are interesting in classification, the tuning pa-

rameter should find the right balance between the bias and the vari-

ance to minimize the misclassification error. Without loss of gener-

ality, it is assumed that the genes are standardized,
∑n

i=1 xi j = 0 and

(n−1)
∑n

i=1 x2
i j = 1, ∀ j ∈ {1, 2, . . . , p}. As a result, the intercept β0

is not penalized. The estimation of the vector β using LASSO (L1-

penalty) is defined as:

β̂LASSO = arg min
β

[
−

n∑
i=1

{
yi ln (πi) + (1 − yi) ln (1 − πi)

}

+λ
p∑

j=1

|β j|
]

, (5)

where λ is a tuning parameter. It reduces to the MLE estimator when

λ = 0. On the other hand, if λ → ∞, the penalty forces all the genes

to be zeros. In practice, the value of λ is often chosen by a cross val-

idation (CV) procedure. Eq. (5) can be efficiently solved by using the
oordinate descent algorithm (Friedman, Hastie, & Tibshirani, 2010;

ark & Hastie, 2008).

The LASSO has an advantage in that it is computationally feasi-

le in high dimensional classification data. On the other hand, the

ASSO has three main drawbacks. First of all, if p > n, the LASSO se-

ects at most n genes because of the nature of the convex optimization

roblem. In addition, the LASSO cannot handle the effect of grouping.

hen the pairwise correlations among a group of genes are very high,

hen the LASSO tends to select only one gene from the whole group

nd does not take into account which one is selected (Zeny, 2012;

ou & Hastie, 2005). Lastly, the LASSO lacks the oracle properties, as

tated by Fan and Li (2001).

. Adaptive penalized logistic regression

According to Fan and Li (2001), a good penalty term should re-

ult in an estimator with three properties: unbiasedness, sparsity

nd continuity. Unbiasedness means the resulting estimator has no

ver penalization for large parameters to avoid unnecessary model-

ng biases. Sparsity is another property that an estimator enjoys. In

ther words, the resulting estimator automatically sets insignificant

arameters to zero. Lastly, continuity is the third property, meaning

hat the resulting estimator is continuous in data in order to avoid

nstability in model prediction.

One of the main reasons for the LASSO not being consistent, i.e.,

acking the oracle property (Fan & Li, 2001) is that it equally penal-

zes all the coefficients, which over-penalizes the irrelevant genes

eading it to be a biased estimator. To alleviate this drawback, Zou

2006) proposed the adaptive LASSO in which adaptive weights are

sed for penalizing different coefficients in the L1-penalty. The ba-

ic idea behind the adaptive LASSO is that by assigning a higher

eight to the small coefficients and lower weight to the large coef-

cients, it is possible to reduce the selection bias; therefore, it can

onsistently select the model. Furthermore, the adaptive LASSO so-

ution is continuous from its definition, which enables it to enjoy

racle properties. The PLR using the adaptive LASSO (APLR) of β is

efined by:

ˆ
APLR = arg min

β

[
−

n∑
i=1

{yi ln (πi) + (1 − yi) ln (1 − πi)}

+λ
p∑

j=1

wj|β j|
]

, (6)

here w = (w1, . . . , wp)T is p × 1 data-driven weight vector. This de-

ends on the root n-consistent initial values of β̂ and w j = (|β̂ j|)−γ ,

here γ is a positive constant. The adaptive LASSO originally used

LE estimates as the initial weight (Zou, 2006). This is no longer valid

n high-dimensional data. Several researchers have used the LASSO

stimates as an alternative initial weight (Bühlmann & Van De Geer,

011). However, using the LASSO estimator in the adaptive LASSO pe-

alized logistic when p > n may not be preferable for three reasons.

irst, the LASSO estimator is inconsistent in itself. In other words, this

nitial weight is biased in the selection of genes. Second, it does not

ake into account the weights for all the genes in any implantation

hich means that some genes will be selected and the others will be

et to zero.

To overcome these limitations, the correlation-based weight has

een proposed as a CBPLR. The idea behind using the correlation-

ased estimator as an initial weight is that it can give weights to

ll genes, which is very important to take into account all the gene

nformation when performing gene selection in the adaptive penal-

zed likelihood. As a result, it can adjust the L -penalty in PLR by
1
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Table 1

Details of the used datasets.

Dataset type n Genes Classes

Colon 62 2000 Tumor/Normal

Prostate 102 5966 Tumor/Non-tumor

DLBCL 77 7129 DLBCL/FL
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Table 2

Classification performance results on colon cancer over 50

partitions.

Method Number of AUC Misclassification

selected genes rate

LASSO 17 0.915 0.263

APLR 16 0.928 0.210

CBPLR 10 0.966 0.105

Fig. 1. Conficence interval 95% of the classification accuray average: (a) colon data, (b)

prostate data, and (c) DLBCL data.
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mproving consistent genes selection. The CBPLR is defined as:

ˆ
CBPLR = arg min

β

{
−

n∑
i=1

{yi ln (πi) + (1 − yi) ln (1 − πi)}

+λ
p∑

j=1

wj(CB)
|βj|

}
(7)

here wCB = (w1(CB), . . . , wp(CB))
T be the CB weight vector and w j =

abs(β̂ j(CB))]−γ , j = 1, 2, . . . , p. Then a coordinate descent method

an be used to solve Eq. (7). The β̂ j(CB) is calculated according to

he correlation-based penalty, which was introduced by Tutz and

lbricht (2009). This penalty does not perform gene selection, but

t has the capability of dealing with correlated genes. The β̂ j(CB) is

efined as:

ˆ
CB = arg min

β

(
−�(β0, β) + λ

p−1∑
i=1

∑
j>i

{
(βi − βj)

2

1 − ρi j

+ (βi + βj)
2

1 + ρi j

})

(8)

here ρ ij represents the pairwise correlation between the ith and jth

enes.

Ridge regression is a special case from Eq. (8) when the ρi j = 0.

q. (8) is a convex function; this means that there is always a mini-

um local solution. Unfortunately, this penalty is no longer be a con-

ex function when ρi j = 1 ∀ i �= j. This reason makes Eq. (8) inappli-

able when there is at least one pairwise correlation between genes

qual to one. Compared to LASSO and to APLR, this drawback does

ot affect their solutions, because their function still convex. Further-

ore, it is well known that correlation used in Eq. (8) is extremely

ensitive to outliers, and can be strongly affected the results. In the

ther hand, LASSO and APLR tends to select more irrelevant genes

hen CV method used in estimating the tuning parameter (Lin et al.,

009). Interestingly, correlation-based penalty performs well when

V is used.

For practical applications, one has to decide the values of λ. Classi-

ally, CV has been widely used. However, it is computationally inten-

ive for the CBPLR, simply because there are two tuning parameters,

and γ . For simplicity, γ = 1 was used for the real data application.

hen, CBPLR tuning parameters were reduced to only λ.

. Results and discussion

To prove the effectiveness of the proposed initial weight, three

NA microarray datasets, with different sample sizes and number

f genes, were used. First, the colon dataset (Alon et al., 1999). Sec-

nd, the prostate dataset (Singh et al., 2002); and, third, the diffuse

arge B-cell lymphoma (DLBCL; Shipp et al., 2002). Table 1 lists the

etails of these datasets. To guarantee a fair comparison of the pro-

osed method with the other two methods, two procedures were set

p. First, two datasets were randomly generated from each microar-

ay dataset: a training set with 70% of the original size and a testing

et with 30%. Second, the CV method with 10-fold was conducted de-

ending on the training set to find the optimal value of λ. All compu-

ations were carried out in the R software using the glmnet package.

Depending on 50 partitions of the training and testing sets, the av-

rage value of the number of selected genes, the area under the curve
AUC) for the training set, and the misclassification rate (Miss.) for

he testing set were used as evaluation criteria for the classification

erformance.

.1. Colon results

The colon cancer dataset contains gene expression levels of 40 tu-

or and 22 normal colon tissues for 6500 human genes obtained

ith an Affymetrix oligonucleotide array. A subset of 2000 genes with

ighest minimal intensity across the samples was used (Alon et al.,

999). Table 2 reports the criteria results for the CBPLR as well as for

he APLR and the LASSO.

As we can see from Table 2, the CBPLR was superior to all the

ompared methods in terms of selected genes, AUC, and misclas-

ification rate. Hence, the utilization of the CBPLR yielded a higher

UC. Furthermore, it can be seen that the misclassification rate of the

BPLR was about 0.105 lower than that of the APLR and the LASSO,

espectively.

The number of genes selected by each method is an important fac-

or. Methods selecting more genes tend to overfit the data. Hence,

ethods with a small number of selected genes are preferred. For

comparison of methods in terms of the number of selected genes,

he CBPLR outperformed the other two methods. It selected 10 genes

ompared to 16 and 17 genes for the APLR and LASSO, respectively.

ig. 1(a) shows a 95% confidence interval for the mean of the classifi-

ation accuracy. It clearly shows that the CBPLR significantly outper-

ormed the APLR and LASSO.
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Table 3

Classification performance results on prostate cancer over 50

partitions.

Method Number of AUC Misclassification

selected genes rate

LASSO 26 0.957 0.129

APLR 26 0.957 0.096

CBPLR 16 0.971 0.064

Table 4

Classification performance results on DLBCL cancer over 50

partitions.

Method Number of AUC Misclassification

selected genes rate

LASSO 29 0.941 0.208

APLR 25 0.953 0.167

CBPLR 17 0.953 0.083

Table 5

Two-way ANOVA for average classification accuracy over 25 times.

Source df SS MS F p-value

Methods 2 6261.7 3130.8 189.1 0.000

Datasets 2 1946.9 973.45 58.8 0.000

Error 445 7366.7 16.554

Total 449 15575.3

Table 6

P-value of Duncan’s multiple range test

for average classification accuracy.

LASSO APLR CBPLR

LASSO 0.036 0.000

APLR 0.004

CBPLR
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5.2. Prostate results

The original prostate dataset contains 12,600 genes for 52 prostate

tumor samples and 50 non-tumor tissues. A subset of 5966 genes was

adapted in the classification (Singh et al., 2002). Table 3 presents the

results obtained from the evaluation criteria.

The classification performance in the training set using the AUC of

the proposed method, CBPLR, was 0.971, which was better than 0.957

and 0.957 obtained by the APLR and LASSO, respectively, which indi-

cated the better classification ability of the CBPLR than the other two

methods. Depending on the test set, the CBPLR reduced the misclas-
Table 7

Classification accuracy (%) for different splitting

50%:50% 60%:40%

Train Test Train Test

Colon

LASSO 81.39 79.06 83.72 76.74

APLR 87.32 83.72 88.37 86.04

CBPLR 92.95 90.14 91.75 91.75

Prostate

LASSO 91.75 89.75 92.75 91.75

APLR 94.36 92.95 91.54 91.54

CBPLR 95.34 92.82 96.22 95.34

DLBCL

LASSO 91.54 91.54 92.73 91.54

APLR 92.80 92.95 94.01 92.21

CBPLR 93.22 93.34 95.12 94.24
ification significantly in comparison with the other two methods.

he reduction of misclassification using the CBPLR was 33.34% and

0.38% compared with the APLR and LASSO, respectively. In addition,

he CBPLR reduced the number of original genes from 5966 to 16, the

PLR selected 26 genes, and the LASSO had 26 genes. This indicated

hat the CBPLR outperformed the other two methods in terms of the

umber of selected genes.

Fig. 1(b) displays the confidence interval 95% of the mean of the

lassification accuracy mean. It can be concluded from Fig. 1(b) that

he CBPLR has much better classification accuracy compared to the

ther two methods.

.3. DLBCL results

The DLBCL dataset consists of the gene expression values for 77

amples, which were measured by high-density oligonucleotide mi-

roarrays of the two most prevalent adult lymphoid malignancies: 58

amples of the DLBCL and 19 samples of follicular lymphoma (FL).

ach sample contained 7129 gene expression values (Shipp et al.,

002). The evaluation criteria results are shown in Table 4. As shown

n Table 4, both the CBPLR and APLR provided similar results, followed

y the LASSO, which was slightly worse based on the AUC.

Moreover, the reliability of the CBPLR was also assessed from its

isclassification rate value. It ranked the CBPLR above the APLR and

he LASSO. Although the CBPLR and APLR have the same AUC, the CB-

LR provided a reduction in the misclassification rate of about 50.30%

ompared to the APLR. It is also seen from Table 4 that the CBPLR se-

ected significantly less genes than the other two methods.

A 95% confidence interval for the mean of the classification accu-

acy over 50 partitions is depicted in Fig. 1(c). It can be seen from

ig. 1(c) that the CBPLR has the same mean for the classifica-

ion accuracy to the APLR. On the other hand, the LASSO provided

orse classification accuracy compared to the CBPLR and APLR,

espectively.

.4. Stability test for the proposed method

In the stability test for the proposed method, the CBPLR seeks

o prove that it can classify high-dimensional cancer data with a

igh degree of accuracy compared to the other two used methods.

epending on the training dataset, a two-way analysis of variance

ANOVA) was used as a statistical test to check whether the CBPLR,

PLR and the LASSO were statistically significant and if there was

ny significant difference between the three datasets used in terms

f classification accuracy. Table 5 reports the two-way ANOVA re-

ults. From Table 5, the results showed statistically significant differ-

nces between the CBPLR and the two other used methods in terms of

lassification accuracy. In addition, we can see that the colon,
of the three datasets used.

70%:30% 80%:20%

Train Test Train Test

93.02 73.72 92.95 90.69

93.02 79.00 92.95 91.54

97.76 89.54 92.95 91.45

95.77 87.15 93.02 91.54

95.77 90.47 94.36 92.95

97.18 93.69 94.89 94.77

93.25 79.25 91.54 91.54

96.23 83.38 94.36 93.74

96.23 91.75 96.22 95.34
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rostate, and the DLBCL datasets had different classification accuracy

alues.

Furthermore, Duncan’s multiple range test was used to obtain

ore detailed information about the differences between the CBPLR

nd the two other used methods. Table 6 lists the p-value of each

ompared pair of methods. It is apparent from Table 6 that the CB-

LR showed statistical differences compared to the APLR and LASSO

n terms of classification accuracy.

To further prove the stability of the results for the proposed

ethod, the classification accuracy using the CBPLR is also consis-

ently improved for different percentages of splitting the original

ataset for each of the dataset used. The average classification ac-

uracy over 25 times for both the training and testing partitions are

hown in Table 7. As can be seen from Table 7, the CBPLR performed

emarkably well compared to the APLR and LASSO. It always achieved

igher classification accuracy for both the training and testing sets for

ach dataset. In contrast, the LASSO provided less classification accu-

acy in all cases.

Overall, the results demonstrated the fact that the CBPLR is ef-

ective in high-dimensional cancer classification. The CBPLR not only

mproved the classification accuracy but also identified a small subset

f genes compared to the APLR and LASSO.

. Conclusions

High-dimensional classification problems associated with DNA

icroarray data analysis constitute a very important research area

n cancer classification. In the present paper, we proposed and ap-

lied a CBPLR model, CBPLR, to simultaneously estimate the gene

oefficients and perform gene selection, and then improve the clas-

ification performance of the expert classifier system using high-

imensional DNA microarray data.

The proposed method, CBPLR, has been evaluated in terms of the

umber of selected genes, AUC, and misclassification rate through ap-

lying three high-dimensional cancer classification datasets. The ex-

eriment results consistently indicated that the CBPLR has the abil-

ty to significantly reduce the size of the relevant genes compared

o APLR and LASSO. Moreover, it is observed that the CBPLR has the

uperiority in terms of AUC. It achieved maximum AUC of 0.966,

.971, and 0.953 for colon, prostate, and DLBCL datasets. In addi-

ion, the misclassification rate obtained by the proposed method was

he lowest for all of the three high-dimensional cancer classification

atasets, as compared to APLR and LASSO. Furthermore, the stability

est results confirmed the superiority of our proposed method over

he different splitting values. Overall, the results demonstrated the

act that CBPLR is a very competitive method to accurately analyze

igh-dimensional DNA microarray data for cancer classification. For

ractical use of the results, the CBPLR can be applied straightforward

o other types of high-dimensional classification data related to the

edical field.

Although CBPLR results yielded significantly better performance,

t has two limitations. Firstly, if the pairwise correlation between two

enes equal to one, then CBPLR is no longer a convex function. Sec-

ndly, CBPLR depends on the pairwise correlation between genes in

ts calculations. It is well known that microarray dataset with many

enes often contains outliers, therefore, the pairwise correlation used

n CBPLR is extremely sensitive to outliers, and can be strongly af-

ected the results. In the aspects concerning the future research, the

resent work can be extended to cover high-dimensional multiclass

lassification cancer data. Further study can be conducted with more

mphasis on ultrahigh-dimensional DNA microarray data for cancer

lassification.
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