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Abstract. The main objective of this paper is to study the concept of dependency and introduce a new
subclass linked to derivatives of higher order for polyvalent functions with a different operator. Thus, the
results were important it was obtained with respect to different types of some geometric properties of which
coefficient estimate, distortion and growth bounds, radii of starlikeness, convexity, and close-to-convex.
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1. Motivation and preliminaries
One of the most important notions in the complex analysis, is that the theory of harmonic and analytic [7] univalent
functions with (bi or multi-types) [1-6, 8-10, 12-15]. Thus this theory is characterized some special elements to
define new interesting certain classes or sub-classes [3-4] of special functions related to various operators [1-2, 4,
9-11] which may be maximized or maximized some real problem by a certain functional family follows from the
theory of normal functions via some properties of complex functions [5].
More precisely this field have taken the attention of numerous researchers in the domain of applied science in
different situation. Furthermore, these concepts paly a good role to find the exact solution for mathematical
modelling, for example many concrete real problems, such as in the study of physical, chemical, engineering
domains [6].
For this purpose, assume that A = {z € C : |z| < 1} be the open unit disc and let A(p) denote the class of analytic
functions of the form:

f(2)=2zP -3Y> pi1a,2" ,(pEN={1,2,...}) (1) which are
analytic and p-valent in the unit disk A, and let A(1) = A see [8-10]. Now, we introduce the differential operator (
for nether subordination for higher order derivatives Srivastava-Attiya operator [4]) defined as follows

f®D(2) =pzP~t = X7 pyyna, z™,
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fO@ =527 = Bty @ 2™, 2
where
v(:s) =55 vms) =g (pzsp€NseNUO)D. (©)

Using the principle of the dependency properties of polyvalent functions with a different operators [7]. and we have
obtained many results regarding these operators as in [9-11].

The functions f(z) and g(z) be analytic functions in A, then we say f(z) is subordinate to g(z), if there exists a
function w € ¥, where

Y={wedw0)=0and¥ ={w € A:w(0) =0and |w(z)| < 1},
the Schwarz functions, f(z) = g(w(z)).
We write
f(2)<9(2).(z€A)
the function g is univalent in A, then we get the equivalence [8].
f(z) < g(z) & f(0) = g(0) and f(A) c g(A)A function f(z) is called starlike (convex) in A if

satisfies the following condition:

"2 '@ .
(Re (%)) >0, (Re {1 + Z]]: (zj } > O), respectively where z € A, 0 < r < 1 (See [3]).

Let f(z) € A(P) in the subclass K* (A4, B, v, p) if satisfying the following

()

f5+1(z) 1+AZ
1 +Y{ 52 } 1+BZ

(-1<B<A<1)and (0 <y <1)see[l2].
2. Main results

The sufficient conditions for a differential subordination for the class k(4, B, y, p) is studied and demonstrated.

Theorem 2.1. A function f(z) given of the form (5) is in K *(4, B, y, p) if and only if
nl

Yr=p+1\ Gy m) ly(A—=B) —(1+B) +vla, (6)

<lyA-B)+yBy+1)—-B-1|

Proof. Let f(z) € K*(4, B,y,p)- Then we get

(N

_ zf5+1(z) 1+Az
D(z) = 1+y{ } 1+dz

5(2) 1+BZ’
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then we have

_ 1+AT(2)
D(2) = 1+BT(z)’

where T (z) is Schwarz function see [8]

D(2)(1+ BT(2)) =1+ AT(2)

_ D(=)-1
T(2) = A-BD(z)

Such that |T(2)| < 1, we get

lzfs+1(z)_ }_
1+y{ RGNS

A—B{l 7{Zfs+1(2) Y}} <t

vl 5@

| 2 @-yf* (2
[A-BA-]y @) -yzf+t1(2)

|<1

zf**(2) —yf*(2)

— — p_' p—s o L’ — L _ n-—s
=1-7 [(p —s—1)! (p—s)!] z + Zn=p+1 (n—s)! (n—s—l)!) v — Danz !

Now

[A—BA-Nyf@ —yzf**(2)

= {[A-BA -l - BY o5 — o] 27 + Eepn (o — o) (BN +
(10)

By substitution (9) and (10) in (8), we get

p! p! — 1) n! n! —
SRl e il i et (e m)(” Danz"™
1 1
(A-BA-N-BY a2+ Eitp 1 (s ey (B(1— M +AV)anzn=s

<1

When z — 1, we obtain

_ pt___ P ],p-s _n _
a-v [(p—s—l)! (p— s)‘] + Zn p+1 ((n—s)! (n—s—l)!) |(Y 1)|an

<{4-BA -Vl - BY o2 — 1] 77 + Zip (G — o) B — M) +

(&)

®

Ay)a,z"

Ay)a,.

-S



Iraqi Academics Syndicate International Conference for Pure and Applied Sciences IOP Publishing
Journal of Physics: Conference Series 1818(2021) 012188  doi:10.1088/1742-6596/1818/1/012188

Then

!
Siepet (o — o) WA = B) = A+ B) +ylay < ly(A— B) +v(By + 1) — B - 1|.
By using the above theorem we have.

Corollary 2.2. Let the function f is belonging in K*(4, B, y, p). Then

ly(A— B)+Y(BV+1) —B—1|

a, < n=p+1
"7 (s e v Aa-B-a+B) +yl p
we have
f(Z) — Zp - |Y(A B)+Y(B)/+1) —B—1| Zn. (11)

o 's), (ns—l),h’(A B)—(1+B)+v|

Thus we can deduced the following important result.

Theorem 2.3. A function f(z) = zP — Yy—ps1 a,2" is in K(4, B, y, p) if and only if

\(n-s) !
Eipir (oo — ey V(A = B) +v = Byla,
(p—
<ly(A—-B) =By +yl 22— a,. (12)

(p—s-m)(p—s—m-1)!
Proof. Suppose g(z) = zfS*1(z) since f(z) € K(A,B,y,p) and zf$*1(z) € K(4,B,v,p)
therefore from (7) we get

1+Az

_ l ng+1(z) _
D(Z) =1+ y[ am(z) ]/} = 1+BZ (13)
where
g™ _ P®=9) _p-s—-m _ n®=s) 5 _n-s—m
@) = (p—s— m)'Z (n—s—-m)! a'z ) (14)

Such that [T (z)| < 1, we get

l ng+1(z)_ }_
1+V{ @ Y

gm+1(z)
A_B{“ e y}}

zg™* 1 (2)-yg™(2)
A BA-lya™@—rze™ @ | 1 (15)

<1
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zg™t 1 (2) —yg™(2)

=(p-s-m-y)o——BED g psmyye (S0 O N~ 1, (16)

(p—s—m)(p—s—m-—1)! (n—s—-m)! (n—-s——m-—1)!
Now
[y(A — B) — Bylg™(2) + zg™*'(2)

'(p—s) _s—
=[y(A—B)—By+p—s—m]ﬁanzn s-m

oo n!(n—s) _ n!(n—s) _ _ n—s—m
+ Zipir (G — meetss) (P (A = B) = By + Danz" ™™, (17)
From (15), we obtain
(p—s—m—y)—(p_s_,,f;(é:i)_m_1)!Zp_s_m+27°1°=p+1 (Z!_(;l__,fl))! (nf;(j;ls_)l)!)(y—l)an ZnmsTm <1

anzn—s—m

—B)— —s—m]P®=s)
[y(A-B)-By+p-s m](p_s_m_l)!

n!(n-s) n!(n—-s)
(n—-s—-m)! (n—-s—m-—1)!

+ 35 pan ) (A=B)=By+Danzn=s-m.

Since z = 1 we get

e _ p!(p-s) p—s—m . n!(n—s) _ n!(n—s) _
p—s-—m-vy) (p—s—-m)(p—s—m—1)! z + Zn=p+1 ((n—s—m)! (n—s——m—l)!) & —Dan
<[lyA—-B)—By+p—s—m] %anz”*_m

o n!(n-s) n!(n—s)
+Zn=p+1 ((n—s—m)! - (n—s——m—l)!) (v(A—B) - By + 1)an'
Then

o n!(n-s) n!

Zn=p+1 ((n—s—m)! - (n—s——m—l)!) ly(A—B) +y — Bylan
p!(p-s)

<ly(A—-B) - By +vl (p—s-m)(p—s—-m—1)! An-

From the theorem 2.3, we can get.

Corollary 2.4. Let the function f is belonging in K*(4, B,y, p). Then

p!(p—s)
(p—s—m)(p—s—m—1)!

)ya-B)+y-Byl’

ly(A-B)—-By+v]|
an = ( nl(n—s) n!
(n—-s—-m)! (n—-s—-m-—1)!

n=zp+1
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ly(A—B)—By+ |L‘S)‘
f(Z) =zP — n]!/(n—s) . n)'/ ol g, (18)

(n—s—m)! (n—s—‘r.n—l)!I)/(A_B)-H/_By|
The following outcome proves the distortion and growth theorem [2] of the related class.
Theorem 2.5. Let f(z) € K*(4,B,y,p). Then

A—-B)+y(By+1)—B-1
|z|? — |z|P*? ly(A-B)+y(By+1) | < If (@)l

1 1
T G IV (A=B)~(1+B) |

+1 ly(A-B)+y(By+1)—B—1|
S Ile + |Z|p (p+1)! (p+1)[ > ( 19)
(n—s+1)!_(p—s)!)IY(A_B)_(1+B)+VI
we have
— +1 ly(A-B)+y(By+1)—B—1|
f(Z) =zP —2zP (p+1D! _(p+1)! (20)

(n—s+1)! (p—s)!) ly(A-B)-(1+B)+y| .

Growth theorem for the considered subclass K*(A4, B, y, p)is given by.

Theorem 2.6. Let f(z) € K*(4,B,y,p). Then

A—-B By+1)—-B—-1
|p+1 |V( )+V( Y+ ) | S |f(Z)|

1 1
DBy (a-B)-(1+B)+7

[z|P — |z

'(p—s)
ly(A-B)-By+y|—— > ——
(p—s—m)(p—s—m—1)! (21)

(p+1)(p—s+1) (p+1)!(p—s—m+1) 4
S5 p e (B - P e )y (A-B)+y By

< |z|P — |z|P*!

we have

'(p—s)
ly(A=B) =By +y|—— - B —
(p—s—m)(p—s—m—1)! (22)

(p+D(P-s+1) (@+D!(p—s—m+1)
Zﬁ:p“( (p—s—m+1)! (p—s—m)! )ly(A_B)+V_BV|

f(2) = 2P — 77+

The following result shown that the function f(z) satisfies the radii of starlikeness, convexity and close-to-convex

to convexity properties depending on [1], i.e.
f(z) € K*(A,B,y,p).
Theorem 2.7. Let f(z) € K*(4, B,y,p). Then f is of starlikeness order

inlz|<n
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1

n! n! n—p
. (p+n-2) ((n—s)!_(n—s—l)!)|Y(A_B)_(1+B)+y| nop
n(.By.p.m) = mf{(nm—z) ( ly(A=B)+yBy+D~B—1| (23)

Proof. We need to proof that

zf'(2)

27 P =1 —

| (2 1-m,

-D|z[P-¥azpss (M—Dlan]|z"| <1 (24)

|zIP =35 piq lanllz™|
From (24) holds if
(@ — DlzIP = X3zps1s (n— Dlayllz™ = A —m[z|? — Xiipiq lanllz™ ].
Then

0 n+n-2) —
Yimep+1 m|an||2|" P<1 (25)

Form theorem (2.1)

1 1
o o G Y A-B)-(1+B) +
Zn=P+1

ly(A-B)+y(By+1)-B—1| a, <1 26)

Using (24) and (25) we get

n! n!
(p+n-2) IZln—p < (n—s)!_(n—s—l)!)ly(A_B)_(1+B)+y|

(n+n-2) ly(A-B)+y(By+1)—-B—1]|

|Z|n—p < (p+1]—2) ((nri.s)!_(n—rsl.—l)!)l)/(A_B)_(1+B)+y|
- (n+n-2) ly(A-B)+y(By+1)—B—1]|

|Z|n—p < (P+TI—2) ((nr—lls)!_(n—rsl'—l)!)|Y(A_B)_(1+B)+y| ﬁ
— | (n+n-2) ly(A-B)+y(By+1)—B-1| )

The next theorem shows the convexity property of the considered subclass functions.
Theorem 2.8. Let f(z) € K*(A4, B,y,p). Then f is of convex function of order n

in|z| <nr,

_ -2 (G ameem) Y A-B) -+ B)+ | L
2 (4.B,y.p,n) = inf {(n+n—2)( v (a=B)+y By +D-B-1| ’
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Proof. We have to proof that

| zg'(2)
9(2)

where g(z) = zf™*1(2)

(p—s— 1)|z|p S50 erlm(n s—1) lan|lz|"* <1-7. Q@7

(p s— 1)'
| z|P~S Zn=p+1m|an”2|n s

(p s— 1)'

From (27) holds if

!
ey @ s = DIz = B ey (0 — s — D a1z

! _ 0 ! —
< (- 0 |[E 1217 = Tipir gy eIz,

(n—s—-n) (28)

== lag 21" < 1.

Zn P+1 (p—s5-1+2)

(p s—1)!
From theorem (2.1) we have

(s Y (A=B)—(1+B)+7 |
<1. (29)

(n—s)! (n—s—1)!
ly(A-B)+y(By+1)—-B-1|

By using (28) and (29) we get

(n—s— 1)'(n s=m) | |n—s
1
G i(P—s—n+2)
1
_ G o) Y (A-B)=(1+B) +v |
- ly(A-B)+y(By+1)—B—1|
2[s <—(p e i@=s—1+2) (G o) IV (A-B)-(1+B) +y|
m(n 5—1) ly(A-B)+y(By+1)—-B-1|

_*

(p—s—1+2) (((n%!s)!‘#!_l)!)Iy(A—B)—(1+B)+VI)}“‘p

ly(A-B)+y(By+1)—B—1]|

f@) = {ﬁ

tims—Di=s=m)

Hence the proof completed.

The subsequent theorem shows the close-to-convexity property of the considered subclass functions.
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Theorem 2.9. Let f(z) € K*(A, B,y,p). Then f is close-to-convex function of order n

in|z| <71y
[ ) Iy
(2P -0 o) IV (A= B) -1+ B) 4y P
s By b = mf{ nlzP 2y (4-B)+y By +D-B-1D) (30)
Proof. We have to prove that |f'(z) — 1| <1 —n,
that is
If'(@) — 1l < plzIP™* = Z3prnlanllzl™ =1 <1—7
If'(2) =1l < plzP™ = Z3pranlanllzl"™ <2 -7, 3D
From theorem (2.1) we have
ly(Aa— B)+Y(BV+1) —B-1|
a, < n=p+1
Y= =p|+1Yn ((n S 1),)|]/(A B)—(+B)+y| p
o ((_,LL;), m)W(A B)—(1+B)+y| <1 5
Ln=p+1 ly(A-B)+y(By+1)-B-1]| In == (32)

Observe that (32) is true if

n!
plz|v—2-P+P < (m m)h’(l‘l B)—(1+B)+yl|

plz|P~1—(2-n) ly(A-B)+y(By+1)—B—1|

»

that is

[p121P =~ -0 (G~ s =) 1Y (A-B)—(1+B)+v |
n|z|P~(Jy(A-B)+y(By+1)-B-1|)

Therefore

1

2] < {[plzw—l—(z—n)l[((,%)!—(n%’_m)|y(A—B>—(1+B)+y|]}H
Z P )

n|z|P~1(ly(A-B)+y(By+1)—B-1|)

which complete the proof.

3. Acknowledgment
Our thanks in advance to the editors and experts for considering this paper to publish in this esteemed journal and

for their efforts.



Iraqi Academics Syndicate International Conference for Pure and Applied Sciences IOP Publishing

Journal of Physics: Conference Series 1818(2021) 012188  doi:10.1088/1742-6596/1818/1/012188

4. Conclusion

We have shown that subclass is associated with higher-order derivatives of multivalent functions. Many interesting
results concerning the harmonic multivalent functions defined by differential operators. Finally, some geometric
properties like a coefficient estimate, distortion and growth bounds, radii of starlikeness, convexity, and close to

convexity.
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