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Abstract. In this paper, a class of �-differentiable multiobjective programming problems with both
inequality and equality constraints is considered. The so-called vector Mond-Weir �-dual problem
and vector mixed �-duality problem are defined for the considered �-differentiable multiobjective
programming problem with both inequality and equality constraints and several Mond-Weir and
mixed �-duality theorems are established under (generalized) �-invexity hypotheses.

1. Introduction

In recent years, attempts are made by several authors to define various classes of differentiable and
nondifferentiable generalized convex functions in optimization theory and to study their optimality criteria
and duality results for optimization problems in which the involved functions belong to such classes of
nonconvex functions (see, for example, [4], [5], [6], [7], [9], [10], [13], and others).

One of the notions of generalized convexity introduced into optimization theory is the concept of
�-convexity. The definitions of �-convex set and �-convex function were introduced by Youness [21].
This kind of generalized convexity is based on the effect of an operator �� � � � on the sets and the
domain of functions. Megahed et al. [15] presented the concept of an �-differentiable convex function
which transforms a (not necessarily) differentiable convex function to a differentiable function based on the
effect of an operator �� � � � . Recently, Abdulaleem [1] introduced a new concept of generalized
convexity as a generalization of the notion of �-differentiable �-convexity. Namely, he defined the concept
of �-differentiable �-invexity in the case of (not necessarily) differentiable vector optimization problems
with �-differentiable functions.

In this paper, a class of nonconvex �-differentiable vector optimization problems with both inequality
and equality constraints is considered in which the involved functions are �-invex. For such a (not
necessarily differentiable) multiobjective programming problem, its vector Mond-Weir �-dual problem and
vector mixed �-dual problem are defined. Then, several Mond-Weir and mixed �-duality results are
established between the considered �-differentiable multicriteria optimization problem and its vector
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�-duals under appropriate �-invexity hypotheses.

2. Preliminaries

Let � be the � -dimensional Euclidean space and � be its nonnegative orthant. The following
convention for equalities and inequalities will be used in the paper. For any vectors � 	 
� � � � � � � � � 

and � 	 
� � � � � � � � �  in � , we define:

(i) � 	 � if and only if � 	 � for all � 	 ���� � � � � �;
(ii) � � � if and only if � � � for all � 	 ���� � � � � �;

(iii) � � � if and only if � � � for all � 	 ���� � � � � �;
(iv) � � � if and only if � � � and � � ��

Definition 1 [1] Let �� � � � . A set � � � is said to be an �-invex set if and only if there exists a
vector-valued function ��� � � � � such that the relation

�
� � �� �
�� �
� � �

holds for all �� � � � and any � � ���� .

Remark 2 If � is a vector-valued function defined by �
!� � 	 ! " �, then the definition of an �-invex
set reduces to the definition of an �-convex set (see Youness [21]).

Remark 3 If �
# $ #, then the definition of an �-invex set with respect to the function � reduces to the
definition of an invex set with respect to � (see Mohan and Neogy [17]).

Definition 4 [15] Let �� � � � and %� � � � be a (not necessarily) differentiable function at a given
point � � �. It is said that % is an �-differentiable function at � if and only if % & � is a differentiable
function at � (in the usual sense) and, moreover,


% & �
� 	 
% & �
� � '
% & �
�
� " � � (
�� � " �)� " �)� (1)

where (
�� � " � � � as � � �.

Definition 5 [1] Let �� � � � � � � � be a nonempty open � -invex set with respect to the
vector-valued function �� � � � � � and %� � � � be an �-differentiable function on �. It is said
that % is a vector-valued �-invex function with respect to � at � on � if, for all � � �,

% 
�
� " % 
�
� � '% 
�
��
�
�� �
�� � 	 �� � � � � *� (2)

If inequalities (2) hold for any � � �, then % is �-invex with respect to � on �.

Remark 6 From Definition 5, there are the following special cases:

a) If % is a differentiable function and �
� $ � (� is an identity map), then the definition of an
�-invex function reduces to the definition of an invex function introduced by Hanson [12].
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b) If �� � � � � � is defined by �
�� � 	 � " � , then we obtain the definition of an
�-differentiable �-convex vector-valued function introduced by Megahed et al. [15].

c) If % is differentiable, �
� 	 � and �
�� � 	 � " �, then the definition of an �-invex function
reduces to the definition of a differentiable convex vector-valued function.

d) If % is differentiable and �
�� � 	 � " � , then we obtain the definition of a differentiable
�-convex function introduced by Youness [21].

Definition 7 [1] Let �� � � � � � � � be an open �-invex set with respect to the vector-valued
function �� � � � � � and %� � � � be an �-differentiable function on �. It is said that % is a
vector-valued pseudo �-invex function with respect to � at � on � if, for all � � � and � 	 �� � � � � *�

% 
�
� + % 
�
� , '% 
�
��
�
�� �
� + �� (3)

If (3) holds for any � � �, then % is pseudo �-invex with respect to � on �.

Definition 8 [1] Let �� � � � � � � � be an open �-invex set with respect to the vector-valued
function �� � � � � � and %� � � � be an �-differentiable function on �. It is said that % is a
vector-valued quasi �-invex function with respect to � at � on � if, for all � � � and � 	 �� � � � � *�

% 
�
� " % 
�
� - � . '% 
�
��
�
�� �
� - �� (4)

If (4) holds for any � � �, then % is quasi �-invex with respect to � on �.

In this paper, we consider the following (not necessarily differentiable) multiobjective programming
problem (MOP) with both inequality and equality constraints:

/���/�!0 %
� 	 % 
�� � � � � % 
�

1�2304556 7 
� - �� 3 � 8 	 9�� � � � � /:�

; 
� 	 �� 5 � < 	 9�� � � � � =:�

� � � �


�>?

where % � � � � , � � @ 	 9�� � � � � A: , 7 � � � � , 3 � 8 , ; � � � � , 5 � < , are real-valued functions
defined on � � We shall write 7�	 
7 � � � � � 7 � � � � and ;�	 ; � � � � � ; � � � � for
convenience.

For the purpose of simplifying our presentation, we will next introduce some notations which will be
used frequently throughout this paper. Let

B�	 � � C� 7 
� - �� 3 � 8� ; 
� 	 �� 5 � <

be the set of all feasible solutions of (MOP). Further, we denote by 8
� the set of inequality constraint
indices that are active at a feasible solution �, that is, 8
� 	 3 � 8� 7 
� 	 � �

For such multicriterion optimization problems, the following concepts of (weak) Pareto optimal
solutions are defined as follows:

Definition 9 A feasible point � is said to be a weak Pareto (weakly efficient) solution of (MOP) if and
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only if there exists no other feasible point � such that

%
� + %
��

Definition 10 A feasible point � is said to be a Pareto (efficient) solution of (MOP) if and only if there
exists no other feasible point � such that

%
� D %
��

Let �� � � � be a given one-to-one and onto operator. Throughout the paper, we shall assume that
the functions constituting the considered multiobjective programming problem (MOP) are �-differentiable
at any feasible solution.

Now, for the considered multiobjective programming problem (MOP), we define its associated
differentiable vector optimization problem as follows:

/���/�!0 %
�
� 	 % 
�
�� � � � � % 
�
�

1�2304556 7 
�
� - �� 3 � 8 	 9�� � � � � /:�

; 
�
� 	 �� 5 � < 	 9�� � � � � =:�

� � � �


E? 

We call the problem (VP ) an �-vector optimization problem associated to (MOP). Let

B �	 � � � � 7 
�
� - �� 3 � 8� ; 
�
� 	 �� 5 � <

be the set of all feasible solutions of (VP ). Since the functions constituting the problem (MOP) are
assumed to be �-differentiable at any feasible solution of (MOP), by Definition 4, the functions constituting
the �-vector optimization problem (VP ) are differentiable at any its feasible solution (in the usual sense).
Further, by 8 
�, the set of inequality constraint indices that are active at a feasible solution � � B , that is,
8 
� 	 3 � 8� 7 & � 
� 	 � .

Now, we give the definitions of a weak Pareto (weakly efficient) solution and a Pareto (efficient) solution
of the vector optimization problem (VP ), which are, at the same time, a weak �-Pareto solution (weakly
�-efficient solution) and an �-Pareto solution (�-efficient solution) of the considered multiobjective
programming problem (MOP).

Definition 11 A feasible point �
� is said to be a weak �-Pareto solution (weakly �-efficient solution)
of (MOP) if and only if there exists no other feasible point �
� such that

%
�
� + %
�
��

Definition 12 A feasible point �
� is said to be an �-Pareto solution (�-efficient solution) of (MOP) if
and only if there exists no other feasible point �
� such that

%
�
� D %
�
��

Lemma 13 [3]  Let �� � � � be a one-to-one and onto. Then �
B  	 B.

Lemma 14 [3] Let � � B be a weak Pareto solution (Pareto solution) of the considered multiobjective
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programming problem (MOP). Then, there exists ! � B such that � 	 �
! and ! is a weak Pareto
(Pareto) solution of the �-vector optimization problem (VP ).

Lemma 15 [3] Let ! � B be a weak Pareto (Pareto) solution of the �-vector optimization problem
(VP ). Then �
! is a weak Pareto solution (Pareto solution) of the considered multiobjective
programming problem (MOP).

Remark 16 As it follows from Lemma 15, if ! � B is a weak Pareto (Pareto) solution of the �-vector
optimization problem (VP ), then �
! is a weak Pareto solution (Pareto solution) of the considered
multiobjective programming problem (MOP). We call �
! a weak �-Pareto (�-Pareto) solution of the
problem (MOP).

As it follows from the above lemmas, there is some equivalence between the vector optimization
problem (MOP) and (VP ). Therefore, if we prove optimality results for the differentiable �-vector
optimization problem (VP ), they will be applicable also for the original nondifferentiable multiobjective
programming problem (MOP) in which the involved functions are �-differentiable.

Definition 17 The tangent cone (also called contingent cone or Bouligand cone) of B at � � 4F B is
defined by

< 
� 	 9G � � � H9 :I G � G� H9 :I 5 J �1� 5� � � 5 G � B :�

Definition 18 For the constrained �-vector optimization problem (VP ), the � -linearized cone at
� � B , denoted by K 
�, is defined by

K 
� 	 9G � � � '7 �
� G - �� 3 � 8 
�� '; �
� G 	 �� 5 � <:�

Now, we present the �-Guignard constraint qualification which were derived for �-differentiable
multiobjective programming problems with both inequality and equality constraints by Abdulaleem [1].

Definition 19 [1] It is said that the so-called �-Guignard constraint qualification (GCQ ) holds at � � B
for the differentiable constrained �-vector optimization problem (VP ) with both inequality and equality
constraints if

4F 46�L < 
� 	 K 
�� (5)

Now, we present the Karush-Kuhn-Tucker necessary optimality conditions for � � B to be a weak
Pareto solution of the �-vector optimization problem (VP ). These conditions are, at the same time, the
�-Karush-Kuhn-Tucker necessary optimality conditions for �
� � B to be a weak �-Pareto solution of
the considered �-differentiable multiobjective programming problem (MOP).

Theorem 20 [1] (�-Karush-Kuhn-Tucker necessary optimality conditions). Let � � B be a weak Pareto
solution of the �-vector optimization problem (VP ) (and, thus, �
� be a weak �-Pareto solution of the
considered multiobjective programming problem (MOP)). Further, %, 7, ; be �-differentiable at � and the
�-Guignard constraint qualification be satisfied at � . Then there exist Lagrange multipliers � � � ,
M � � , N � � such that

O � '% 
�
� � O M '7 
�
� � O N '; 
�
� 	 �� (6)
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M 7 
�
� 	 �� 3 � 8 �
� � (7)

� � �� M � �� (8)

3. Mond-Weir -duality

In this section, for the differentiable vector E-optimization problem (VP ), we define its vector Mond-Weir
dual problem. In other words, for the considered E-differentiable multiobjective programming problem
(MOP), we define its vector E-dual problem (MWD ) in the sense of Mond-Weir [16]. Then we prove
several E-duality results between vector optimization problems (MOP) and (MWD ) under appropriate
E-invexity hypotheses.

Let E: R → R be a given one-to-one and onto operator. We define the following vector dual problem
in the sense of Mond-Weir related for the differentiable multicriteria E-optimization problem (VP ):

(f & E)(y) = f E(y) , … , f E(y) → V − max

s. t. ∑ λ ∇(f & E)(y) + ∑ μ ∇ g & E (y) + ∑ ξ ∇(h & E)(y) = 0,

∑ μ g & E (y) + ∑ ξ (h & E)(y) ≧ 0, (MWD )

λ ∈ R , λ ≥ 0, μ ∈ R , μ ≧ 0, ξ ∈ R ,

where all functions are defined in the similar way as for the considered E-vector optimization problem
(VP ). Further, let

Γ = {(y, λ, μ, ξ) ∈ R × R × R × R :

∑ λ ∇(f & E)(y) + ∑ μ ∇(g & E)(y) + ∑ ξ ∇(h & E)(y) = 0,

∑ μ g & E (y) + ∑ ξ (h & E)(y) ≧ 0, λ ≥ 0, μ ≧ 0}

be the set of all feasible solutions of the problem (MWD ). Let us denote, Y = {y ∈ R : (y, λ, μ, ξ) ∈ Γ }.
The formulated vector dual problem (MWD ) is the vector Mond-Weir dual problem for the vector
E-optimization problem (VP ). At the same time, we call (MWD ) vector Mond-Weir E-dual problem or
vector E-dual problem in the sense of Mond-Weir for the considered E-differentiable multiobjective
programming problem (MOP).

Now, under E-invexity hypotheses, we prove duality results in the sense of Mond-Weir between the
E-vector problems (VP ) and (MWD ) and, thus, E-duality results in the sense of Mond-Weir between the
problems (MOP) and (MWD ).

Theorem 21 (Mond-Weir weak duality between (VP ) and (MWD )). Let x and (y, λ, μ, ξ) be any
feasible solutions of the problems (VP ) and (MWD ), respectively. Further, assume that at least one of
the following hypotheses is fulfilled:

A) each objective function f , i ∈ I, is E-invex at y on Ω ∪ Y , each constraint function g , j ∈ J, is
an E-invex function at y on Ω ∪ Y , the functions h , t ∈ T E(y) and the functions −h ,
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t ∈ T E(y) , are E-invex at y on Ω ∪ Y .
B) (f & E)(y) is pseudo E-invex at y on Ω ∪ Y , μ g & E (y) is quasi E-invex at y on Ω ∪ Y ,

ξ (h & E)(y) is quasi E-invex at y on Ω ∪ Y .

Then
(f & E)(x) ≮ (f & E)(y). (9)

Proof. Let x and (y, λ, μ, ξ) be any feasible solutions of the problems (VP ) and (VMD ), respectively.
The proof of this theorem under hypothesis A). If x = y, then the weak duality trivially holds. Now, we

prove the weak duality theorem when x ≠ y. We proceed by contradiction. Suppose, contrary to the result,
that the inequality

(f & E)(x) < (f & E)(y) (10)

holds. By the feasibility of (y, λ, μ, ξ) in the problem (MWD ), the above inequality yields

∑ λ ∇f (E(x)) < ∑ λ ∇f (E((y)). (11)

By assumption, x and (y, λ, μ, ξ) are feasible solutions for the problems (VP ) and (MWD ),
respectively. Since the functions f , i ∈ I , g , j ∈ J , h , t ∈ T , −h , t ∈ T , are E -invex at y on
Ω ∪ Y , by Definition 5, the following inequalities

f E(x) − f E(y) ≧ ∇f E(y) η E(x), E(y) , i ∈ I, (12)

g E(x) − g E(y) ≧ ∇g E(y) η E(x), E(y) , j ∈ J (y), (13)

h E(x) − h E(y) ≧ ∇h E(y) η E(x), E(y) , t ∈ T E(y) , (14)

−h E(x) + h E(y) ≧ −∇h E(y) η E(x), E(y) , t ∈ T E(y) (15)

hold, respectively. Multiplying inequalities (12)-(15) by the corresponding Lagrange multiplier,
respectively, we obtain that the inequality

λ f E(x) − λ f E(y) ≧ λ ∇f E(y) η E(x), E(y) , i ∈ I, (16)

μ g E(x) − μ g E(y) ≧ μ ∇g E(y) η E(x), E(y) , j ∈ J (y), (17)

ξ h E(x) − ξ h E(y) ≧ ξ ∇h E(y) η E(x), E(y) , t ∈ T E(y) , (18)

−ξ h E(x) + ξ h E(y) ≧ −ξ ∇h E(y) η E(x), E(y) , t ∈ T E(y) (19)

hold, respectively. Then adding both sides of (16)-(19), we obtain that the inequality
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∑ λ f (E(x)) − ∑ λ f (E(y)) + ∑ μ g (E(x)) −

∑ μ g (E(y)) + ∑ ξ h (E(x)) − ∑ ξ h (E(y)) ≧

∑ λ ∇f E(y) + ∑ μ ∇g E(y) + ∑ ξ ∇h E(y) η E(x), E(y)

holds. Thus, by x ∈ Ω , it follows that the following inequality

∑ λ f (E(x)) − ∑ λ f (E(y)) − ∑ μ g (E(y)) − ∑ ξ h (E(y)) ≧

∑ λ ∇f E(y) + ∑ μ ∇g E(y) + ∑ ξ ∇h E(y) η E(x), E(y)
(20)

holds. Thus, by (20) and the first constraint of (MWD ), we have

∑ λ f (E(x)) − ∑ λ f (E(y)) − ∑ μ g (E(y)) − ∑ ξ h (E(y)) ≧ 0. (21)

Since (y, λ, μ, ξ) is a feasible solutions of (MWD ), the inequality

∑ λ ∇f (E(x)) ≧ ∑ λ ∇f (E((y)) (22)

holds. Hence, by (22) and λ ≧ 0, i = 1,2, . . . , p, ∑ λ = 1, it follows that the inequality (11) cannot
hold which means that the proof of the Mond-Weir weak duality theorem between the E -vector
optimization problems (VP ) and (MWD ) is completed under hypothesis A).

The proof of this theorem under hypothesis B). We proceed by contradiction. Suppose, contrary to the
result, that (10) holds. Since the function (f & E)(⋅) is pseudo E-invex at y on Ω ∪ Y , by Definition 7,
the inequality

∑ λ ∇(f & E)(y)η E(x), E(y) < 0 (23)

holds. Since μ g & E (y) and ξ ∇(h & E)(y) are quasi E-invex at y on Ω ∪ Y , by the foregoing above
relations, Definition 8 implies that the inequalities

∑ μ ∇ g & E (y)η E(x), E(y) ≦ 0, (24)

∑ ξ ∇(h & E)(y)η E(x), E(y) ≦ 0. (25)

hold, respectively. Combining (23), (24) and (25), it follows that the inequality

∑ λ ∇f (E(y)) + ∑ μ ∇g (E(y)) + ∑ ξ ∇h (E(y)) η E(x), E(y) < 0 (26)

holds, contradicting the first constraint of the vector Mond-Weir E-dual problem (MWD ). This means that
the proof of the Mond-Weir weak duality theorem between the E-vector optimization problems (VP ) and
(MWD ) is completed under hypothesis B).

Theorem 22 (Mond-Weir weak E-duality between (MOP) and (MWD )). Let E(x) and (y, λ, μ, ξ) be any
feasible solutions of the problems (MOP) and (MWD ), respectively. Further, assume that all hypotheses
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of Theorem 21 are fulfilled. Then, Mond-Weir weak E-duality between (MOP) and (MWD ) holds, that is,

(f & E)(x) ≮ (f & E)(y).

Proof. Let E(x) and (y, λ, μ, ξ) be any feasible solutions of the problems (MOP) and (MWD ),
respectively. Then, by Lemma 13. it follows that x is any feasible solution of (VP ). Since all hypotheses
of Theorem 21 are fulfilled, the Mond-Weir weak E-duality theorem between the problems (MOP) and
(MWD ) follows directly from Theorem 21.

If some stronger E -invexity hypotheses are imposed on the functions constituting the considered
E-differentiable multiobjective programming problem, then the stronger result is true.

Theorem 23 (Mond-Weir weak duality between (VP ) and (MWD )). Let x and (y, λ, μ, ξ) be any
feasible solutions of the problems (VP ) and (MWD ), respectively. Further, assume that at least one of
the following hypotheses is fulfilled:

A) each objective function f , i ∈ I, is strictly E-invex at y on Ω ∪ Y , each constraint function g ,
j ∈ J, is an E-invex function at y on Ω ∪ Y , the functions h , t ∈ T E(y) and the functions
−h , t ∈ T E(y) , are E-invex at y on Ω ∪ Y .

B) (f & E)(y) is strictly pseudo E-invex at y on Ω ∪ Y , μ g & E (y) is quasi E-invex at y on
Ω ∪ Y , ξ (h & E)(y) is quasi E-invex at y on Ω ∪ Y .
Then

(f & E)(x) ≰ (f & E)(y). (27)

Theorem 24 (Mond-Weir weak E-duality between (MOP) and (MWD )). Let E(x) and (y, λ, μ, ξ) be any
feasible solutions of the problems (MOP) and (MWD ), respectively. Further, assume that all hypotheses
of Theorem 23 are fulfilled. Then, weak E-duality between (MOP) and (VMD ) holds, that is,

(f & E)(x) ≰ (f & E)(y).

Theorem 25 (Mond-Weir strong duality between (VP ) and (MWD ) and also strong E-duality between
(MOP) and (MWD )). Let x ∈ Ω be a weak Pareto solution (Pareto solution) of the E -vector
optimization problem (VP ) (and, at thus, E(x) be a weak E-Pareto solution (E-Pareto solution) of the
E-vector optimization problem (MOP)). Further, assume that the E-Guignard constraint qualification
(GCQ ) be satisfied at x. Then there exist λ ∈ R , μ ∈ R , μ ≧ 0 , ξ ∈ R such that x, λ, μ, ξ is
feasible for the problem (MWD ) and the objective functions of (VP ) and (MWD ) are equal at these
points. If also all hypotheses of the Mond-Weir weak duality (Theorem 21) Theorem 23 are satisfied, then
x, λ, μ, ξ is a (weak) efficient solution of a maximum type in the problem (MWD ).

In other words, if E(x) ∈ Ω is a (weak) E-Pareto solution of the multiobjective programming problem
(MOP), then x, λ, μ, ξ is a (weak) efficient solution of a maximum type in the dual problem (MWD ) in
the sense of Mond-Weir. This means that the Mond-Weir strong E-duality holds between the problems
(MOP) and (MWD ).

Proof. Since x ∈ Ω is a weak Pareto solution of the problem (VP ) and the E-Guignard constraint
qualification (GCQ ) is satisfied at x, by Theorem 20, there exist λ ∈ R , μ ∈ R , μ ≧ 0, ξ ∈ R such
that x, λ, μ, ξ is a feasible solution of the problem (MWD ). This means that the objective functions of
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(VP ) and (MWD ) are equal. If we assume that all hypotheses of the Mond-Weir weak duality (Theorem
21) are fulfilled, x, λ, μ, ξ is a (weak) efficient solution of a maximum type in the dual problem (MWD )
in the sense of Mond-Weir.

Moreover, we have, by Lemma 13, that E(x) ∈ Ω. Since x ∈ Ω is a weak Pareto solution of the
problem (VP ), by Lemma 15, it follows that E(x) is a weak E-Pareto solution in the problem (MOP).
Then, by the Mond-Weir strong duality between (VP ) and (MWD ), we conclude that also the
Mond-Weir strong E-duality holds between the problems (MOP) and (MWD ). This means that if
E(x) ∈ Ω is a weak E-Pareto solution of the problem (MOP), there exist λ ∈ R , μ ∈ R , μ ≧ 0, ξ ∈ R

such that x, λ, μ, ξ is a weakly efficient solution of a maximum type in the Mond-Weir dual problem
(MWD ).

Theorem 26 (Mond-Weir converse duality between (VP ) and (MWD )). Let x, λ, μ, ξ be a (weakly)
efficient solution of a maximum type in Mond-Weir dual problem (MWD ) such that x ∈ Ω . Moreover,
assume that the objective functions f , i ∈ I, are (E-invex) strictly E-invex at x on Ω ∪ Y , the constraint
functions g , j ∈ J, are E-invex at x on Ω ∪ Y , the functions h , t ∈ T E(x) and the functions −h ,
t ∈ T E(x) , are E-invex at x on Ω ∪ Y . Then x is a (weak) Pareto solution of the problem (VP ).

Proof. Let x, λ, μ, ξ be a (weakly) efficient solution of a maximum type in Mond-Weir dual problem
(MWD ) such that x ∈ Ω . By means of contradiction, we suppose that there exists x ∈ Ω such that the
inequalty

(f & E)(x) < (f & E)(x) (28)

holds. By the feasibility of x, λ, μ, ξ in the problem (MWD ), the above inequality yields

∑ λ ∇f (E(x)) < ∑ λ ∇f (E((x)). (29)

Since the functions f , i ∈ I , g , j ∈ J , h , t ∈ T , −h , t ∈ T , are E-invex at x on Ω ∪ Y , by
Definition 5, the following inequalities

f E(x) − f E(x) ≧ ∇f E(x) η E(x), E(x) , i ∈ I, (30)

g E(x) − g E(x) ≧ ∇g E(x) η E(x), E(x) , j ∈ J (x), (31)

h E(x) − h E(x) ≧ ∇h E(x) η E(x), E(x) , t ∈ T E(x) , (32)

−h E(x) + h E(x) ≧ −∇h E(x) η E(x), E(x) , t ∈ T E(x) (33)

hold, respectively. Multiplying inequalities (30)-(33) by corresponding Lagrange multipliers, respectively,
we obtain that the inequality

λ f E(x) − λ f E(x) ≧ λ ∇f E(x) η E(x), E(x) , i ∈ I, (34)

μ g E(x) − μ g E(x) ≧ μ ∇g E(x) η E(x), E(x) , j ∈ J (x), (35)
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ξ h E(x) − ξ h E(x) ≧ ξ ∇h E(x) η E(x), E(x) , t ∈ T E(x) , (36)

−ξ h E(x) + ξ h E(x) ≧ −ξ ∇h E(x) η E(x), E(x) , t ∈ T E(x) (37)

hold, respectively. Then, adding both sides of (34)-(37), we get that the inequality

∑ λ f (E(x)) − ∑ λ f (E(x)) + ∑ μ g (E(x)) −

∑ μ g E(x) + ∑ ξ h E(x) − ∑ ξ h E(x) ≧

∑ λ ∇f E(x) + ∑ μ ∇g E(x) + ∑ ξ ∇h E(x) η E(x), E(x)

holds. Thus, by x ∈ Ω , x ∈ Ω and (29), the following inequality

∑ λ ∇f E(x) + ∑ μ ∇g E(x) + ∑ ξ ∇h E(x) η E(x), E(x) < 0 (38)

holds, contradicting the feasibility of x, λ, μ, ξ in (MWD ). This means that the proof of the converse
duality theorem between the E-vector optimization problems (VP ) and (MWD ) is completed.

Theorem 27 (Mond-Weir converse E -duality between (MOP) and (MWD )). Let x, λ, μ, ξ be a
(weakly) efficient solution of a maximum type in Mond-Weir dual problem (MWD ). Further, assume that
all hypotheses of Theorem 26 are fulfilled. Then E(x) ∈ Ω is a (weak) E-Pareto solution of the problem
(MOP).

Proof. The proof of this theorem follows directly from Lemma 15 and Theorem 26.

Theorem 28 (Mond-Weir restricted converse duality between (VP ) and (MWD )). Let x be feasible of
the considered E-differentiable multiobjective programming problem (VP ) and y, λ, μ, ξ be feasible of
its vector Mond-Weir dual problem (MWD ). Moreover, assume that the functions f , i ∈ I, are strictly
E-invex at y on Ω ∪ Y , the constraint functions g , j ∈ J, are E-invex at y on Ω ∪ Y , the functions h ,
t ∈ T E(y) and functions −h , t ∈ T E(y) , are E -invex at y on Ω ∪ Y such that f(E(x)) =

f(E(y)). Then x is a (weak) Pareto solution of the problem (VP ) and y, λ, μ, ξ is a (weakly) efficient
point of a maximum type for the problem (MWD ).

Proof. By means of contradiction, suppose that x is not a (weak) Pareto solution of the problem (VP ).
This means, by Definition 11, that there exists x ∈ Ω such that

f(E(x)) < f(E(x)). (39)

By assumption, f(E(x)) = f(E(y)). Hence, (39) yields

f(E(x)) < f(E(y)). (40)
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By y, λ, μ, ξ is a feasible solution for (MWD ). Then, it follows that λ ≥ 0. Hence, the above inequality
yields

∑ λ f (E(x)) < ∑ λ f (E(y)). (41)

By assumption, the functions f , i ∈ I, g , j ∈ J, h , t ∈ T , −h , t ∈ T , are E-invex at y on Ω ∪ Y .
Then by Definition 5, the following inequalities

f E(z) − f E(y) ≧ ∇f E(y) η E(z), E(y) , i ∈ I, (42)

g E(z) − g E(y) ≧ ∇g E(y) η E(z), E(y) , j ∈ J(E(y)), (43)

h E(z) − h E(y) ≧ ∇h E(y) η E(z), E(y) , t ∈ T (E(y)), (44)

−h E(z) + h E(y) ≧ −∇h E(y) η E(z), E(y) , t ∈ T (E(y)) (45)

hold for z ∈ Ω ∪ Y . Thus, they are also fulfilled for z = x ∈ Ω . Hence, (42)-(45) yield, respectively,

f E(x) − f E(y) ≧ ∇f E(y) η E(x), E(y) , i ∈ I, (46)

g E(x) − g E(y) ≧ ∇g E(y) η E(x), E(y) , j ∈ J(E(y)), (47)

h E(x) − h E(y) ≧ ∇h E(y) η E(x), E(y) , t ∈ T (E(y)), (48)

−h E(x) + h E(y) ≧ −∇h E(y) η E(x), E(y) , t ∈ T (E(y)). (49)

By the feasibility of y, λ, μ, ξ in (MWD ), it follows that

λ f E(x) − λ f E(y) ≧ λ ∇f E(y) η E(x), E(y) , i ∈ I, (50)

μ g E(x) − μ g E(y) ≧ μ ∇g E(y) η E(x), E(y) , j ∈ J(E(y)), (51)

ξ h E(x) − ξ h E(y) ≧ ξ ∇h E(y) η E(x), E(y) , t ∈ T (E(y)), (52)

−ξ h E(x) + ξ h E(y) ≧ −ξ ∇h E(y) η E(x), E(y) , t ∈ T (E(y)). (53)

Adding both sides of (50)-(53), we obtain

∑ λ f E(x) − ∑ λ f E(y) + ∑ μ g E(x) −

∑ μ g (E(y)) + ∑ ξ h (E(x)) − ∑ ξ h (E(y)) ≧

∑ λ ∇f E(y) + ∑ μ ∇g E(y) + ∑ ξ ∇h E(y) η E(x), E(y)

(54)
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By (54), the first constraint of (MWD ) and x ∈ Ω imply that the following inequality

∑ f (E(x)) ≧ ∑ f (E(y)) (55)

holds, contradicting (41). Then, x = y and this means by Mond-Weir weak duality (Theorem 21) that x is
a weak Pareto solution of the problem (VP ) and y, λ, μ, ξ is a weakly efficient solution of a maximum
type for the problem (MWD ). Thus, the proof of this theorem is completed.

Theorem 29 (Mond-Weir restricted converse E-duality between (MOP) and (MWD )). Let y, λ, μ, ξ be
a feasible solution of the problem (MWD ). Further, assume that there exist E(x) ∈ Ω such that x = y. If
all hypotheses of Theorem 28 are fulfilled, then E(x) is an E-Pareto solution of the problem (MOP) and
y, λ, μ, ξ is a weakly efficient solution of maximum type for the problem (MWD ).

Proof. The proof of this theorem follows directly from Lemma 15 and Theorem 28.

4. Mixed -duality

In this section, a vector mixed E-dual problem is defined for the considered E-differentiable multiobjective
programming problem (MOP) with inequality and equality constraints.

Before we define the foregoing vector dual problem, we introduce some notations which will be helpful
in presenting its formulation.

Let the index set J be partitioned into two disjoint subset J and J such that J = J ∪ J and the index
set T be partitioned into two disjoint subset T and T such that T = T ∪ T . Let J be an index set such
that J ⊆ J and J = J\J and, moreover, |J | and |J | denote the cardinality of the index sets J and J ,
respectively. Further, let T be an index set such that T ⊆ T and T = J\T and, moreover, |T | and |T |
denote the cardinality of the index sets T and T , respectively. Let us denote the set

Ω = x ∈ X: g (x) ≦ 0, j ∈ J , h (x) = 0, t ∈ T .

Now, for the considered E-differentiable multiobjective programming problem (MOP), we introduce the

definition of the mixed scalar Lagrange function L : Ω × R × R
| |

× R| | → R as follows

L(x, λ, μ , ξ ):= ∑ λ f (x) + ∑ ∈ μ g (x) + ∑ ∈ ξ h (x). (56)

Let us denote by e the vector of R whose components are all ones. Further, let E: R → R be a given
one-to-one and onto operator. Further, let us define the following set

Ω := x ∈ X: g & E (x) ≦ 0, j ∈ J , (h & E)(x) = 0, t ∈ T .

Now, we consider the following vector E -dual problem for the considered E -differentiable
multiobjective programming problem (MOP):
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maximize (f & E)(y) + μ g & E (y) + ξ h & E (y) e

s. t. ∑ λ ∇(f & E)(y) + ∑ μ ∇ g & E (y) + ∑ ξ ∇(h & E)(y) = 0,

μ g & E (y) ≧ 0,

ξ ∇ h & E (y) = 0,

λ ∈ R , λ ≥ 0, λe = 1, μ ∈ R , μ ≧ 0, ξ ∈ R ,

(VMD )

where all functions are defined in the similar way as for the considered vector optimization problem (MOP).
Further, let Γ denote the set of all feasible solutions of (VMD ), that is,

Γ = {(y, λ, μ, ξ) ∈ R × R × R × R : ∑ λ ∇(f & E)(y) +

∑ μ ∇ g & E (y) + ∑ ξ ∇(h & E)(y) = 0, ∑ ∈ μ g & E (y) ≧ 0,

∑ ∈ ξ ∇(h & E)(y) = 0, λ ≥ 0, λe = 1, μ ≧ 0}.

Further, Y = {y ∈ X: (y, λ, μ, ξ) ∈ Γ } . We call (VMD ) the vector mixed E -dual problem for the
E-differentiable multiobjective optimization problem (MOP).

Note that if set J = � and T = � in (VMD ), then we get a vector Mond-Weir E-dual problem for
(MOP) and, moreover, if we set J = � and T = � in (VMD ), then we obtain a vector Wolfe E-dual
problem for (MOP).

Now, we shall prove several mixed E-duality results between E-vector optimization problems (VP )
and (VMD ) under E-invexity assumptions. Then, we use these duality results in proving several mixed
E-duality results between vector optimization problems (MOP) and (VMD ).

Theorem 30 (Mixed weak duality between (VP ) and (VMD )). Let x and (y, λ, μ, ξ) be any feasible
solutions of the problems (VP ) and (VMD ), respectively. Further, assume that at least one of the
following hypotheses is fulfilled:

A) each objective function f , i ∈ I, is E-invex at y on Ω ∪ Y , each constraint function g , j ∈ J, is
an E-invex function at y on Ω ∪ Y , the functions h , t ∈ T E(y) and the functions −h ,
t ∈ T E(y) , are E-invex at y on Ω ∪ Y .

B) (f & E)(y) + μ g & E (y) + ξ h & E (y) e is pseudo E-invex at y on Ω ∪ Y ,
μ g & E (y) is quasi E-invex at y on Ω ∪ Y , ξ ∇ h & E (y) is quasi E-invex at y on
Ω ∪ Y .

Then
(f & E)(x) ≮ (f & E)(y) + μ g & E (y) + ξ h & E (y) e. (57)

Proof. Let x and (y, λ, μ, ξ) be any feasible solutions of the problems (VP ) and (VMD ), respectively.
The proof of this theorem under hypothesis A). By means of contradiction, suppose that

(f & E)(x) < (f & E)(y) + μ g & E (y) + ξ h & E (y) e.

Thus,
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(f & E)(x) < (f & E)(y) + [∑ ∈ μ g & E (y) + ∑ ∈ ξ (h & E)(y)], i ∈ I. (58)

Multiplying each inequality (58) by λ and then adding both sides of the resulting inequalities, we get

∑ λ (f & E)(x) < ∑ λ (f & E)(y) + [∑ ∈ μ g & E (y) + ∑ ∈ ξ (h & E)(y)]∑ λ .

Since ∑ λ = 1, the following inequality

∑ λ (f & E)(x) < ∑ λ (f & E)(y) + ∑ ∈ μ g & E (y) + ∑ ∈ ξ (h & E)(y)

holds. By x ∈ Ω and (y, λ, μ, ξ) ∈ Γ , we have

∑ λ (f & E)(x) + ∑ ∈ μ g & E (x) + ∑ ∈ ξ (h & E)(x) < (59)

∑ λ (f & E)(y) + ∑ ∈ μ g & E (y) + ∑ ∈ ξ (h & E)(y),

∑ ∈ μ g & E (x) ≦ ∑ ∈ μ g & E (y), (60)

∑ ∈ ξ (h & E)(x) = ∑ ∈ ξ (h & E)(y). (61)

Combining (59), (60) and (61), we get

∑ λ (f & E)(x) + ∑ μ g & E (x) + ∑ ξ (h & E)(x) < (62)

∑ λ (f & E)(y) + ∑ μ g & E (y) + ∑ ξ (h & E)(y).

Since the functions f , i ∈ I, g , j ∈ J, h , t ∈ T , −h , t ∈ T , are E-invex on Ω ∪ Y , by Definition 5,
the following inequalities

(f & E)(x) − (f & E)(y) ≧ ∇(f & E)(y)η E(x), E(y) , i ∈ I, (63)

g & E (x) − g & E (y) ≧ ∇ g & E (y)η E(x), E(y) , j ∈ J (y), (64)

(h & E)(x) − (h & E)(y) ≧ ∇(h & E)(y)η E(x), E(y) , t ∈ T E(y) , (65)

−(h & E)(x) + (h & E)(y) ≧ −∇(h & E)(y)η E(x), E(y) , t ∈ T E(y) (66)

hold, respectively. Multiplying inequalities (60)-(63) by corresponding Lagrange multipliers, respectively,
and then adding both sides of resulting inequalities, we obtain
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∑ λ (f & E)(x) − ∑ λ (f & E)(y) + ∑ μ g & E (x) − ∑ μ g & E (y)

+∑ ξ (h & E)(x) − ∑ ξ (h & E)(y) ≧ [∑ λ ∇(f & E)(y) +

∑ μ ∇ g & E (y) + ∑ ξ ∇(h & E)(y)]η E(x), E(y) .

Hence, by (62), the inequality above implies that the following inequality

∑ λ ∇(f & E)(y) + ∑ μ ∇ g & E (y) + ∑ ξ ∇(h & E)(y) η E(x), E(y) < 0 (67)

holds, contradicts the first constraint of the vector mixed E-dual problem (VMD ). This means that the
proof of the mixed weak duality theorem between the E-vector optimization problems (VP ) and (VMD )
is completed under hypothesis A).

The proof of this theorem under hypothesis B). We proceed by contradiction. Suppose, contrary to the
result, that (58) holds. Since the function (f & E)(⋅) + [μ g & E (⋅) + ξ h & E (⋅)]e is pseudo
E-invex at y on Ω ∪ Y , by Definition 7, the inequality

∑ λ ∇(f & E)(y) + ∑ ∈ μ ∇ g & E (y) + ∑ ∈ ξ ∇(h & E)(y) η E(x), E(y) < 0 (68)

holds. From x ∈ Ω and (y, λ, μ, ξ) ∈ Γ , the relations (60) and (61) are fulfilled. Since μ g & E (y)

and ξ h & E (y) are quasi E-invex at y on Ω ∪ Y , by the foregoing above relations, Definition 8
implies that the inequalities

∑ ∈ μ ∇ g & E (y)η E(x), E(y) ≦ 0, (69)

∑ ∈ ξ ∇(h & E)(y)η E(x), E(y) ≦ 0. (70)

hold, respectively. Combining (68), (69) and (70), it follows that the inequality (67) is fulfilled,
contradicting the first constraint of the vector mixed E-dual problem (VMD ). This means that the proof of
the mixed weak duality theorem between the E-vector optimization problems (VP ) and (VMD ) is
completed under hypothesis B).

Theorem 31 (Mixed weak E-duality between (MOP) and (VMD )). Let E(x) and (y, λ, μ, ξ) be any
feasible solutions of the problems (MOP) and (VMD ), respectively. Further, assume that all hypotheses of
Theorem 30 are fulfilled. Then, mixed weak E-duality between (MOP) and (VMD ) holds, that is,

(f & E)(x) ≮ (f & E)(y) + [μ g & E (y) + ξ h & E (y)]e.

Proof. Let E(x) and (y, λ, μ, ξ) be any feasible solutions of the problems (MOP) and (VMD ),
respectively. Then, by Lemma 13. it follows that x is any feasible solution of (VP ). Since all hypotheses
of Theorem 30 are fulfilled, the mixed weak E-duality theorem between the problems (MOP) and (VMD )
follows directly form Theorem 30.

If some stronger E -invexity hypotheses are imposed on the functions constituting the considered
E-differentiable multiobjective programming problem, then the stronger result is true.

Theorem 32 (Mixed weak duality between (VP ) and (VMD )). Let x and (y, λ, μ, ξ) be any feasible
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solutions of the problems (VP ) and (VMD ), respectively. Further, assume that at least one of the
following hypotheses is fulfilled:

A) each objective function f , i ∈ I, is strictly E-invex at y on Ω ∪ Y , each constraint function g ,
j ∈ J, is an E-invex function at y on Ω ∪ Y , the functions h , t ∈ T E(y) and the functions
−h , t ∈ T E(y) , are E-invex at y on Ω ∪ Y .

B) (f & E)(y) + μ g & E (y) + ξ h & E (y) e is strictly pseudo E-invex at y on Ω ∪ Y ,
μ g & E (y) is quasi E-invex at y on Ω ∪ Y , ξ h & E (y) is quasi E-invex at y on
Ω ∪ Y .

Then
(f & E)(x) ≰ (f & E)(y) + μ g & E (y) + ξ h & E (y) e. (71)

Theorem 33 (Mixed weak E-duality between (MOP) and (VMD )). Let E(x) and (y, λ, μ, ξ) be any
feasible solutions of the problems (MOP) and (VMD ), respectively. Further, assume that all hypotheses of
Theorem 32 are fulfilled. Then, mixed weak E-duality between (MOP) and (VMD ) holds, that is,

(F & E)(x) ≰ (f & E)(y) + μ g & E (y) + ξ h & E (y) e.

Theorem 34 (Mixed strong duality between (VP ) and (VMD ) and also strong E-duality between (MOP)
and (VMD )). Let x ∈ Ω be a weak Pareto solution (Pareto solution) of the E-vector optimization
problem (VP ) and the E-Guignard constraint qualification (GCQ ) be satisfied at x. Then there exist
λ ∈ R , λ ≠ 0, μ ∈ R , μ ≧ 0, ξ ∈ R , ξ ≧ 0 such that x, λ, μ, ξ is feasible for the problem (VMD )
and the objective functions of (VP ) and (VMD ) are equal at these points. If also all hypotheses of the
mixed weak duality (Theorem 30) Theorem 32 are satisfied, then x, λ, μ, ξ is a (weak) efficient solution of
a maximum type in problem (VMD ).

In other words, if E(x) ∈ Ω is a (weak) E-Pareto solution of the multiobjective programming problem
(MOP), then x, λ, μ, ξ is a (weak) efficient solution of a maximum type in the vector mixed dual problem
(VMD ). This means that the mixed strong E-duality holds between the problems (MOP) and (VMD ).

Proof. Since x ∈ Ω is a weak Pareto solution of the problem (VP ) and the E-Guignard constraint
qualification (GCQ ) is satisfied at x, by Theorem 20, there exist λ ∈ R , λ ≠ 0, μ ∈ R , μ ≧ 0, ξ ∈ R ,
ξ ≧ 0 such that x, λ, μ, ξ is a feasible solution of the problem (VMD ). This means that the objective
functions of (VP ) and (VMD ) are equal. If we assume that all hypotheses of mixed weak duality
(Theorem 30) are fulfilled, x, λ, μ, ξ is a (weak) efficient solution of a maximum type in the dual problem
(VMD ) in the sense of mixed.

Moreover, we have by Lemma 13, that E(x) ∈ Ω. Since x ∈ Ω is a weak Pareto solution of the
problem (VP ), by Lemma 15, it follows that E(x) is a weak E-Pareto solution in the problem (MOP).
Then, by the strong duality between (VP ) and (VMD ), we conclude that also the mixed strong E-duality
holds between the problems (MOP) and (VMD ). This means that if E(x) ∈ Ω is a weak E-Pareto solution
of the problem (MOP), there exist λ ∈ R , λ ≠ 0, μ ∈ R , μ ≧ 0, ξ ∈ R , ξ ≧ 0 such that x, λ, μ, ξ is a
weakly efficient solution of a maximum type in the mixed dual problem (VMD ).



2nd International Science Conference

IOP Conf. Series: Journal of Physics: Conf. Series 1294 (2019) 032027

IOP Publishing

doi:10.1088/1742-6596/1294/3/032027

18

Theorem 35 (Mixed converse duality between (VP ) and (VMD )). Let x, λ, μ, ξ be a (weakly) efficient
solution of a maximum type in mixed dual problem (VMD ) such that x ∈ Ω . Moreover, that the
objective functions f , i ∈ I, are E-invex at x on Ω ∪ Y , the constraint functions g , j ∈ J, are E-invex at
x on Ω ∪ Y , the functions h , t ∈ T E(x) and the functions −h , t ∈ T E(x) , are E-invex at x on
Ω ∪ Y . Then x is a (weak) Pareto solution of the problem (VP ).

Proof. Proof of this theorem follows directly from Theorem 30.

Theorem 36 (Mixed converse E-duality between (MOP) and (VMD )). Let x, λ, μ, ξ be a (weakly)
efficient solution of a maximum type in mixed dual problem (VMD ). Further, assume that all hypotheses
of Theorem 35 are fulfilled. Then E(x) ∈ Ω is a (weak) E-Pareto solution of the problem (MOP).

Proof. The proof of this theorem follows directly from Lemma 15 and Theorem 35.

5. Conclusion

In this paper, the class of E-differentiable vector optimization problems with both inequality and equality
constraints has been considered. The so-called vector Mond-Weir E-dual problem and vector mixed E-dual
problem have been formulated for such E-differentiable multiobjective programming problems. Then,
various E-duality theorems between the considered E-differentiable E-invex vector optimization problem
and its Mond-Weir and mixed vector dual problems have been proved under (generalized) E-invexity
hypotheses.

However, some interesting topics for further research remain. It would be of interest to investigate
whether it is possible to prove similar results for other classes of E-differentiable vector optimization
problems. We shall investigate these questions in subsequent papers.
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