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Hosoya polynomial of some cactus chains
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Abstract: Let G = (V, E) be a simple graph. Hosoya polynomial of G is 
H(G, x) =

∑

{u,v}⊆V(G)
x
d(u,v), where d(u, v) denotes the distance between vertices u and 

v. A cactus graph is a connected graph in which no edge lies in more than one cycle. 
In this paper we compute the Hosoya polynomial of some cactus chains. As a 
consequence, Wiener and hyper-Wiener indices of these kind of chains are also 
obtained.
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1. Introduction
A simple graph G = (V, E) is a finite nonempty set V(G) of objects called vertices together with a 
(possibly empty) set E(G) of unordered pairs of distinct vertices of G called edges. In chemical graphs, 
the vertices of the graph correspond to the atoms of the molecule, and the edges represent the 
chemical bonds. The Hosoya polynomial of a graph is a generating function about distance distribut-
ing, introduced by Hosoya (1988) and for a connected graph G is defined as:

where d(u, v) denotes the distance between vertices u and v. This polynomial has computed for 
some nano-structures (e.g. Alikhani & Iranmanesh, 2014; Xu & Zhang, 2009). The Hosoya polynomial 

H(G, x) =
∑

{u,v}⊆V(G)

x
d(u,v)

,
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has many chemical applications (Deutsch & Klavžar, 2013; Estrada, Ivanciuc, Gutman, Gutierrez, & 
Rodrguez, 1998; Gutman, Klavžar, Petkovsek, & Zigert, 2001; Gutman et al., 2012). Especially, the two 
well-known topological indices, i.e. Wiener index and hyper-Wiener index, can be directly obtained 
from the Hosoya polynomial. The Wiener index of a connected graph G is denoted by W(G), is defined 
as the sum of distances between all pairs of vertices in G (Hosoya, 1971), i.e.

The hyper-Wiener index is denoted by WW(G) and defined as follows:

Note that the first derivative of the Hosoya polynomial at x = 1 is equal to the Wiener index:

Also we have the following relation:

In this paper we consider a class of simple linear polymers called cactus chains. Cactus graphs 
were first known as Husimi tree, they appeared in the scientific literature sixty years ago in papers 
by Husimi and Riddell concerned with cluster integrals in the theory of condensation in statistical 
mechanics (Harary & Uhlenbeck, 1953; Husimi, 1950; Riddell, 1951). We refer the reader to papers 
(Chellali, 2006; Majstorović, Došlić, & Klobučar, 2012) for some aspects of parameters of cactus 
graphs. A cactus graph is a connected graph in which no edge lies in more than one cycle. 
Consequently, each block of a cactus graph is either an edge or a cycle. If all blocks of a cactus G are 
cycles of the same size i, the cactus is i-uniform. The cactus graphs whose are i-uniform for i = 3, 4, 6 
are of importance in chemistry and so we consider them in this paper. A triangular cactus is a graph 
whose blocks are triangles, i.e. a 3-uniform cactus. A vertex shared by two or more triangles is called 
a cut-vertex. If each triangle of a triangular cactus G has at most two cut-vertices, and each cut-
vertex is shared by exactly two triangles, we say that G is a chain triangular cactus. By replacing tri-
angles in these definitions by cycles of length 4 we obtain cacti whose every block is C

4
. We call such 

cacti square cacti. Note that the internal squares may differ in the way they connect to their neigh-
bors. If their cut-vertices are adjacent, we say that such a square is an ortho-square; if the cut-verti-
ces are not adjacent, we call the square a para-square (Alikhani, Jahari, Mehryar, & Hasni, 2014).

In the next section, we compute the Hosoya polynomial of triangular and square cacti chains. In 
Section 3, we compute this polynomial for two kind of chain hexagonal cactus. As a consequence, 
the Wiener and the hyper-Wiener indices of these kind of chains are also obtained.

2. Hosoya polynomial of triangular and square cactus chains
In this section we compute the Hosoya polynomial of triangular and square cactus chains. First we 
consider a chain triangular. An example of a chain triangular cactus is shown in Figure 1. We call the 
number of triangles in G, the length of the chain. Obviously, all chain triangular cacti of the same 
length are isomorphic. Hence, we denote the chain triangular cactus of length n by T

n
. Here we com-

pute the Hosoya polynomial of T
n
.

W(G) =
∑

{u,v}⊆V(G)

d(u, v).

WW(G) =
1

2

∑

{u,v}⊆V(G)

d(u, v) +
1

2

∑

{u,v}⊆V(G)

d
2
(u, v).

W(G) = (H(G, x))
�
|

x=1
.

WW(G) =
1

2
(xH(G, x))

��
|

x=1
.

Figure 1. Chain triangular 
cactus T

n
.
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Theorem 2.1  The Hosoya polynomial of the chain triangular cactus Tn (n ≥ 2) is

Proof Let u and v be two arbitrary vertices of Tn. Suppose that d(u, v) = k. For k = 1, there are two such 
pair of vertices with deg(u) = deg(v) = 2, there are 2n pair of vertices with deg(u) = 2 and deg(v) = 4, 
and there are n − 2 such pair of vertices with deg(u) = deg(v) = 4. Therefore the coefficient of x in 
H(Tn, x) is 3n. For 2 ≤ k ≤ n − 1, there are n − k + 3 pair of vertices u, v with deg(u) = deg(v) = 2, and 
2(n − k + 1) pair of vertices u, v ∈ V(G) with deg(u) = 2 and deg(v) = 4, and n − k − 1 pair of vertices 
such as u, v ∈ V(G) with deg(u) = deg(v) = 4. So the coefficient of xk for 2 ≤ k ≤ n − 1 is 4n − 4k + 4. 
Finally for k = n, there are four pair of vertices u, v ∈ V(G) with deg(u) = deg(v) = 2, and so the coef-
ficient of xn is 4. Therefore by definition of Hosoya polynomial we have the result.  ✷

The following corollary gives the Wiener index and hyper-Wiener index of T
n
:

Corollary 2.2  

(i)  The Wiener index of triangular cactus Tn (n ≥ 2) is 

(ii)  The hyper-Wiener index of Tn (n ≥ 2) is 

Proof  

(i)  It follows from Theorem 2.1 and the identity W(G) = (H(G, x))�|x=1.

(ii)  It follows from Theorem 2.1 and the identity 

 ✷

 By replacing triangles in the definitions of triangular cactus T
n
, by cycles of length 4 we obtain 

cacti whose every block is C
4
. We call such cacti, square cacti. An example of a square cactus chain 

is shown in Figure 2. We see that the internal squares may differ in the way they connect to their 
neighbors. If their cut-vertices are adjacent, we say that such a square is an ortho-square; if the cut-
vertices are not adjacent, we call the square a para-square. We consider a para-chain of length n, 

H(Tn, x) = 3nx +

n−1
∑

k=2

(4n − 4k + 4)xk + 4xn.

W(Tn) = 7n + 4

n−1
∑

k=2

k(n − k + 1).

WW(Tn) = n(2n + 5) + 2

n−1
∑

k=2

k(k + 1)(n − k + 1).

WW(G) =
1

2
(xH(G, x))��|x=1.

Figure 2. Para-chain square 
cactus graph Q

n
.

Figure 3. Ortho-chain square 
cactus graph O

n
.
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which is denoted by Q
n
 as shown in Figure 2. The following theorem gives the Hosoya polynomial of 

Q
n
.

Theorem 2.3  The Hosoya polynomial of the para-chain square cactus graph Qn (n ≥ 2) is

Proof Suppose that u and v are two arbitrary vertices of Qn and let d(u, v) = k. For k = 2s + 1 
(0 ≤ s ≤ n − 2), there are four pair of vertices u, v with deg(u) = deg(v) = 2, there are 4(n − s − 1) pair 
of vertices u, v with deg(u) = 2 and deg(v) = 4. So the coefficient of x2s+1 is 4n − 4s. For k = 2, there are 
5(n − 1) + 1 pair of vertices u, v with deg(u) = deg(v) = 2, there are two pair of vertices u, v with deg(u) = 2 
and deg(v) = 4 and there are n − 2 pair of vertices such as u, v with deg(u) = deg(v) = 4. So the degree of 
x2 is 6n − 4. For k = 2s (2 ≤ s ≤ n − 1), there are 4(n − s) pair of vertices u, v with deg(u) = deg(v) = 2, 
there are two pair of vertices u, v with deg(u) = 2 and deg(v) = 4, and there are n − s − 1 pair of verti-
ces u, v with deg(u) = deg(v) = 4. So the coefficient of x2s (2 ≤ s ≤ n − 1) is 5n − 5s + 1. For k = 2n − 1, 
there are four pair of vertices u, v with deg(u) = deg(v) = 2 and for k = 2n, there is one pair of vertices 
u, v with deg(u) = deg(v) = 2. Therefore by the definition of Hosoya polynomial, we have the result. 
 ✷

The following corollary gives the Wiener index and hyper-Wiener index of Q
n
 Figure 5:

Corollary 2.4  

(i)  The Wiener index of the para-chain square cactus Qn (n ≥ 2) is 

(ii)  The hyper-Wiener index of Qn (n ≥ 2) is 

Now we consider another kind of square cactus chain and compute its Hosoya polynomial (Figure 3).

Theorem 2.5  The Hosoya polynomial of the ortho-chain square cactus graph On (n ≥ 5) is

Proof Suppose that u and v are two vertices of On and let d(u, v) = k. For k = 1, there are n + 2 of verti-
ces u, v with deg(u) = deg(v) = 2, there are 2n pair of vertices u, v with deg(u) = 2 and deg(v) = 4, and 
there are n − 2 pair of vertices such as u, v with deg(u) = deg(v) = 4. So the coefficient of x in H(On, x) is 

H(Qn, x) = (6n − 4)x2 +

n−2
∑

s=0

(4n − 4s)x2s+1 +

n−1
∑

s=2

(5n − 5s + 1)x2s + 4x2n−1 + x2n.

W(Qn) = 22n − 12 + 4

n−2
∑

s=0

(2s + 1)(n − s) +

n−1
∑

s=2

2s(5n − 5s + 1).

WW(Qn) = 10n
2
+ 15n − 12 + 4

n−2
∑

s=0

(s + 1)(2s + 1)(n − s) +

n−1
∑

s=2

s(2s + 1)(5n − 5s + 1).

H(On, x) = x
n+2

+ 6xn+1 + 15xn +

n−1
∑

k=4

(9n − 9k + 15)xk + (8n − 12)x3 + (6n − 4)x2 + 4nx.

Figure 4. Para-chain hexagonal 
cactus graph L

n
.

Figure 5. Meta-chain graph M
n
.
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4n. For k = 2, there are n + 3 pair of vertices u, v with deg(u) = deg(v) = 2, there are 4(n − 1) pair of vertices 
u, v with deg(u) = 2 and deg(v) = 4, and there are n − 3 pair of vertices u, v with deg(u) = deg(v) = 4. So the 
coefficient of x2 in H(On, x) is 6n − 4. For k = 3 there are 3n pair of vertices u, v with deg(u) = deg(v) = 2, there 
are 4(n − 3) + 4 pair of vertices u, v with deg(u) = 2 and deg(v) = 4, and there are n − 4 pair of vertices 
u, v with deg(u) = deg(v) = 4. So the coefficient of x3 in H(On, x) is 8n − 14.

For 4 ≤ k ≤ n − 1, there are 4(n − k + 3) pair of vertices u,  v with deg(u) = deg(v) = 2, there are 
4(n − k + 1) pair of vertices u, v with deg(u) = 2 and deg(v) = 4 and n − k − 1 pair of vertices such as 
u, v with deg(u) = deg(v) = 4. So the coefficient of xk (4 ≤ k ≤ n − 1) in H(On, x) is (9n − 9k + 13). For 
k = n there are 13 pairs of vertices u, v with deg(u) = deg(v) = 2, there are two pairs of vertices u, v 
with deg(u) = 2 and deg(v) = 4. So the coefficient of xn in H(On, x) is 15. Finally observe that there are 
six pairs of vertices u, v with d(u, v) = n + 1 and one pair of vertices such as u, v with d(u, v) = n + 2. 
Therefore we have the result.  ✷

The following corollary gives the Wiener index and the hyper-Wiener index of O
n
.

Corollary 2.6  

(i)  The Wiener index of the ortho-chain square cactus graph On (n ≥ 5) is 

(ii)  The hyper-Wiener index of On (n ≥ 5) is 

3. Hosoya polynomial of chain hexagonal cactus

In this section we shall compute the Hosoya polynomial of some hexagonal cactus chains. By replacing 
triangles in the definitions of triangular cactus, by cycles of length 6 we obtain cacti whose every block is 
C
6
. We call such cacti, hexagonal cacti. An example of a hexagonal cactus chain is shown in Figure 4. We 

see that the internal hexagonal may differ in the way they connect to their neighbors. If their cut-vertices 
are adjacent, we say that such a square is an ortho-hexagonal; if the cut-vertices are not adjacent, we 
call the square a para-hexagonal. We consider a para-chain of length n, which is denoted by L

n
 as shown 

in Figure 4. The following theorem gives the Hosoya polynomial of L
n
. In this section, we shall compute 

the Hosoya polynomial of two kinds of para-chain hexagonal cactus. The following theorem gives the 
Hosoya polynomial of L

n
.

Theorem 3.1 The Hosoya polynomial of the para-chain hexagonal cactus graph Ln (n ≥ 3) is 

H(L
n
, x) = x

3n
+ 4x

3n−1
+ 8x

3n−2
+

n−1
∑

s=2

(9n − 9s + 1)x
3s
+

n−2
∑

s=1

(8n − 8s − 4)x
3s+2

+

n−2
∑

s=1

8(n − s)x
3s+1

+ (11n − 8)x
3
+ (10n − 4)x

2
+ 6nx.

Proof Suppose that u and v are two vertices of Ln and let d(u, v) = k. For k = 1, there are 2n + 4 of verti-
ces u, v with deg(u) = deg(v) = 2, there are 4(n − 1) pair of vertices u, v with deg(u) = 2 and deg(v) = 4. 
So the coefficient of x is 6n. For k = 2, there are 6n pair of vertices u, v with deg(u) = deg(v) = 2, and 
there are 4(n − 1) pair of vertices such as u, v with deg(u) = 2 and deg(v) = 4. So the coefficient of 
x2 is 10n − 4. For k = 3, there are 10(n − 1) + 2 pair of vertices u, v with deg(u) = deg(v) = 2, there are 
two pair of vertices u, v with deg(u) = 2 and deg(v) = 4 and n − 2 pair of vertices such as u, v with 
deg(u) = deg(v) = 4. So the coefficient of x3 is 11n − 8.

W(On) = 62n − 36 +

n−1
∑

k=4

k(9n − 9k + 15).

WW(On) = 11n
2
+ 55n − 51 +

1

2

n−1
∑

k=4

k(k + 1)(9n − 9k + 15).
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For k = 3s + 1 (1 ≤ s ≤ n − 2) there are 4(n − s + 1) pair of vertices u,  v with deg(u) = deg(v) = 2, 
there are 4(n − s − 1) pair of vertices u, v with deg(u) = 2 and deg(v) = 4. So the coefficient of x3s+1 
(1 ≤ s ≤ n − 2) is 8(n − s).

For k = 3s + 2 (1 ≤ s ≤ n − 2), there are 4(n − s) pair of vertices u, v with deg(u) = deg(v) = 2, there 
are 4(n − s − 1) pair of vertices u,  v with deg(u) = 2 and deg(v) = 4. So the coefficient of x3s+2 is 
(8n − 8s − 4). For k = 3s (2 ≤ s ≤ n − 1) there are 8(n − s) pair of vertices u, v with deg(u) = deg(v) = 2, 
there are two pairs of vertices such as u, v with deg(u) = 2 and deg(v) = 4, and n − s − 1 pair of verti-
ces such as u, v with deg(u) = deg(v) = 4. So the coefficient of x3s (2 ≤ s ≤ n − 1) is 9n − 9s + 1.

For k = 3n − 2, there are eight pairs of vertices u, v with deg(u) = deg(v) = 2. For k = 3n − 1 and 
k = 3n, there are four and one pair of vertices, respectively. Therefore we have the result.  ✷

The following corollary gives the Wiener index of L
n
.

Corollary 3.2 The Wiener index of the para-chain hexagonal cactus graph Ln (n ≥ 3) is equal to

Theorem 3.3  The Hosoya polynomial of the para-chain hexagonal cactus graph Mn (n ≥ 4) is

Proof Suppose that u and v are two vertices of On and let d(u, v) = k. For k = 1 there are 2n + 4 
vertices u, v with deg(u) = deg(v) = 2 and 4(n − 1) pair of vertices with deg(u) = 2 and deg(v) = 4. So 
the coefficient of x is 6n. For k = 2 there are 5n pair of vertices u, v with deg(u) = deg(v) = 2, there 
are 2n pair of vertices u, v with deg(u) = 2 and deg(v) = 4, and n − 2 pair of vertices such as u, v with 
deg(u) = deg(v) = 4. So the coefficient of x2 is 8n − 2. For k = 3 there are 5n + 2 pair of vertices u, v 
with deg(u) = deg(v) = 2 and 6n − 10 pair of vertices u, v with deg(u) = 2 and deg(v) = 4. So the coef-
ficient of x3 is 11n − 8. For k = 4, there are 9(n − 1) − 2 pair of vertices u, v with deg(u) = deg(v) = 2, 
there are 2(n − 1) pair of vertices u, v with deg(u) = 2 and deg(v) = 4 and n − 3 pair of vertices such as 
u, v with deg(u) = deg(v) = 4. So the coefficient of x4 is 12n − 16.

For k = 2s + 1 (2 ≤ s ≤ n − 2) there are 6(n − s + 1) + 2 pairs of vertices u,  v with deg(u) = deg(v) = 2, 
and 6(n − s − 1) + 2 pairs of vertices u, v with deg(u) = 2 and deg(v) = 4. So the coefficient of x2s+1 
(2 ≤ s ≤ n − 2) is (12n − 12s + 4).

For k = 2s (3 ≤ s ≤ n − 1) there are 10(n − s + 1) − 1 pair of vertices u, v with deg(u) = deg(v) = 2, 
there are 2(n − s + 1) pair of vertices u, v with deg(u) = 2 and deg(v) = 4 and n − s − 1 pair of vertices 
such as u, v with deg(u) = deg(v) = 4. the coefficient of x2s (3 ≤ s ≤ n − 1) is (13n − 13s + 10).

For k = 2n − 1 there are 14 pairs of vertices u, v with deg(u) = deg(v) = 2, and two pairs of verti-
ces u, v with deg(u) = 2 and deg(v) = 4. So the coefficient of x2n−1 is 16. For k = 2n, k = 2n + 1 and 
k = 2n + 2, there are ten, four, and one pair of vertices. Therefore we have the result.  ✷

The following corollary gives the Wiener index of M
n
.

Corollary 3.4 The Wiener index of the Para-chain hexagonal cactus graph Mn (n ≥ 4) is equal to

98n − 52 +

n−2
∑

s=1

[

(24s + 8)(n − s) + (3s + 2)(8n − 8s − 4)
]

+

n−1
∑

s=2

3s(9n − 9s + 1).

H(Mn, x) = x
2n+2

+ 4x2n+1 + 10x2n + 16x2n−1 +

n−1
∑

s=3

(13n − 13s + 10)x2s

+

n−2
∑

s=2

(12n − 12s + 4)x2s+1 + (12n − 16)x4 + (11n − 8)x3 + (8n − 2)x2 + 6nx.

165n − 102 +

n−2
∑

s=2

(2s + 1)(12n − 12s + 4) +

n−1
∑

s=3

2s(13n − 13s + 10).
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