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ABSTRACT 

Robot manipulators are designed to execute required 

movements. Their controller design is equally important. 

Selective Compliant Assembly Robot Arm (SCARA) has 

four degrees of freedom (DOFs), with three (shoulder, 

elbow, wrist) controlled by servo motors and one by 

pneumatics. Presented here is the development of a 

complete mathematical model of an industrial-application 

SCARA robot including the servomotor dynamics and 

simulation of the dynamics, also the analytical inverse 

kinematic problem (IKP) and the forward kinematic solution 

by D-H parameters. The DC servomotor driving each of the 

robot-arm joint is studied and modeled. The robot arm is 

built for trajectories of drilling, manufacture, assembly, etc. 

It is realized by a 3D virtual reality (VR) model, which 

builds and receives commands through a 

MATLAB/Simulink link for the design‟s simulation on 

MATLAB Version R2012a. The control scheme is Adaptive 

Neuro Fuzzy Inference Strategy (ANFIS). A neural network 

with fuzzy logic controller (FLC) selects the proper rule 

base through back propagation algorithm. The integrated 

approach improves system performance, cost-effectiveness, 

efficiency, dynamism, and controller reliability. The method 

is effective, and the response (settling) is fast. The SCARA 

here is VR-verified. Real-time application is possible 

through interface cards. 

Keywords-SCARA robot, mathematical modeling, 

kinematic solutions 

1. INTRODUCTION 

SCARA manipulators frequently perform tasks such as 

defect removal, pick-and-place, brushing, hole pegging, 

circuit board assembly, and mechanical assembly, all which 

require accurate tracking and high-speed maneuvering of the 

end-effector. Some tasks involve large payloads (10kg-

20kg) and high speeds. Conventional high-speed robots 

cannot handle large payloads, whereas robots handling large 

payloads cannot reach high speeds.  

 

Vibration, too, can be an issue. Servo hydraulics make high 

speeds with high payloads possible. High speeds or torques  

 

usually can be obtained only from large electric motors, 

which have high inertia, limiting the performance of the 

robot. Parallel kinematic mechanisms with stationary 

actuators often produce the high speeds. They are very 

accurate and very stiff [1]. Some can reach accelerations of 

up to 785 ms−2 (almost 80 times the gravitational 

acceleration), but unusable with large payloads. Their 

operating envelope is limited, and they do not suit planar 

operations. To overcome the problem of inertia, belt drives 

isolate the drive system components including the actuator 

and the power transmission components, from the moving 

parts. This, however, introduces backlash and friction to the 

system. Some studies propose options such as the wire-

driven FALCON (FAst Load CONveyance) robot. 3-DOF 

M.I.T. direct-drive manipulator was proposed by Toumi and 

Kuo. Its tracking speed is 3m/s, and it can accelerate to up 

to 3.8 times the gravitational acceleration (accurate to 

between 0.05mm and 0.1mm). There is yet to be any study 

on a hydraulic solution to the high-speed high-payload 

problem [2 – 5].  

Planar operations extensively use SCARA manipulators. 

Conventional commercial SCARA manipulators are driven 

by brushless DC motors, which can produce very high 

torques but also add to system inertia. Overcoming the 

problem are revolute joints coupled by gears or belt drives, 

however introducing the problems of delay, slip, and 

friction. At very high speeds, large-payload handling in 

electric-motor-driven SCARA becomes impossible. Studies 

on servo-hydraulics systems have been on high-

torque/force-related applications only. A few have used 

servo-hydraulic actuators to drive serial manipulators. Some 

used linear actuators to drive revolute joints, varying the 

torque throughout the operating envelope, limiting 

performance. There is insufficient research on rotary 

actuators. Bilodeau, studied rotary hydraulic actuators for a 

dexterous humanoid robot. Heintze, and Hera, considered 

rotary actuators for high-torque applications. None so far 

have used servo hydraulics to produce high speeds in serial 

manipulators [6-10]. 

This work developed with D-H formulation, the kinematic 

equations of the SCARA with robot dynamics and the 
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actuators-dc servomotors for each joint. Actuator 

characteristics; dc servo motors were studied in detail. It 

develops through Virtual Reality Modeling Language 

(VRML) a 4-axis SCARA system for handling. The 

structure to be built depends on the principles of solid-body 

modeling with VR technology. Simulation on 

MATLAB/Simulink software will reinforce the results 

obtained by SD program. The results of both will be 

presented and discussed. The paper is organized as follows: 

Section 2 introduces robotics and robot kinematics, Section 

3 presents the robot‟s inverse kinematics, Section 4, the 

dynamics, Sections 5 and 6, the robot‟s actuators and 

transmission elements, Section 7 a review of ANFIS, 

Section 8 the VRML design of the model, Section 9 the 

ANFIS controller, and Section 10 the simulation, results, 

and conclusions.  

2. ROBOT KINEMATICS 

Table 1 defines the Denavit-Hartenberg (D-H) parameters 

specifying the SCARA robot. 

 
Table.1 D-H parameters of the robot 

 

 

 

 

 

 

By using (D-H) convention [11], the transformation 

matrices result in: 
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After the multiplication and use of addition matrices, one 

gets the total transformation matrix: 
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3. INVERSE KINEMATICS OF THE ROBOT 

3.1. Inverse Solution for Position: 

Desired location of the SCARA robot 
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The final equation representing the robot is [12-16]: 

0
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H                                     (7) 

To solve for the angle θ4, both sides of equation (7) are 

successively pre-multiplied with 
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such that: 
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The left side of the equation (8) (
R

HTAAA 1

1

1

2

1

3


) is:   

(9) 

(9) 

i Θi
 

di
 ai

 
αi

 

1 θ1

 
0 L1

 0 

2 θ2

 
0 L2

 
0 

3 0 d3
 0 0

 

4 θ4

 
d4

 0 0 



                             International Journal of Advanced Computing, ISSN:2051-0845, Vol.46, Issue.3               1318 

 

© RECENT SCIENCE PUBLICATIONS ARCHIVES| June 2013|$25.00 | 27702482 | 

*This article is authorized for use only by Recent Science Journal Authors, Subscribers and Partnering Institutions* 

                                                                           (9) 

From 1,4 and 2,4 elements of the equations (5) and (6): 
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12211 sLsLpy 
                                                       (11)

 

From equation 10 and equation 11, 
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Rearranging equation (10) and equation (11) yields: 

  1221221 ssLccLLpx                    (15) 

  1221122 scLLcsLpy                    (16) 

Solving equations (15) and (16) by kramer‟s rule: 
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From 4,4 elements of the equation (5) and (6): 

43 dpd z                      (23) 

We have 

03                       (24) 

From 1,1 and 2,1 elements of the equation (4) and (9): 
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3.2. Inverse Solution for Velocity 

From equation (11) and equation (12) 
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Using Kramer‟s rule to solve equation (31) and equation 
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Translational velocity: 

zpd  3                                 (34) 

By differentiating the equation (27): 
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And finally: 

 

4

1212121212

4
c

sncnnsnc

dt

d yxx 



 

          (37) 

3.3 Inverse Solution for Acceleration 
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4. Dynamics of the Robot  

For SCARA robot figure 3, torques exerted on the robot 

joints are [17]: 

2
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5. ACTUATOR EQUATIONS (ACTUATOR 

MODELING) 

Actuator is the device moving a robot. The device types 

include pistons (pneumatic, hydraulic) and motors (DC, 

stepper). Most robots use DC motors, so a detailed model 

for this actuator type will be derived for use throughout this 

research. To control the voltage supply, the motor drive will 

use PWM control,  which use microcontrollers for these 

advantages [18-20]:  

1) their size and lightness 

2) the fewer inputs and outputs, and 

3) remote operation using 

4) changeable with minimum loss of the armature voltage 

Equations governing permanent-magnet operation with 

separate-wound or shunt-wound DC motors (see Figure 4) 

when the flux is constant are [12]: 

dt
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LeRiV a

aaa                         (45) 
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6.  TRANSMISSION EQUATIONS 

The many types of transmission elements in a robot convey 

mechanical power from the actuator to the load. Gear is the 

most common transmission element. A common robotic 
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revolute-joint transmission element is harmonic drive [13] - 

compact in-line parallel shafts with very high transmission 

ratio. The torque transmitted to the motor shaft (T) can be 

calculated from Figure 5 as: 

L

L

m

L

m
rL TTTgTT  









/                 (49) 

Also, the transmitted inertia is 

2/ rLm gJjJ                     (50) 

For the third joint, the translational variable (linear velocity) 

can be derived as: 

3
2

d
D

m
                     (51) 

7. ADAPTIVE NEURO FUZZY INFERENCE 

SCHEME (ANFIS) 

This section reviews the ANFIS concepts used in 

controlling a plant‟s system parameters. Neural network 

(NN) concepts began as an attempt at transliterating human 

thought. NNs have had successful application in speech 

recognition, image analysis, and adaptive control, 

constructing software agents or autonomous robots and 

controlling machines. ANNs are a family of intelligent 

algorithms that can be used for time-series prediction, 

classification, and control and identification. NNs have the 

ability to train with induction motor‟s various parameters. 

As a non-linear function, they can identify extremely 

nonlinear system parameters with high accuracy. Use of 

NNs to identify and control nonlinear dynamic systems has 

been proposed because they can approximate a wide range 

of non-linear functions to any desired accuracy. They also 

have extremely fast parallel computation and high fault 

tolerance characteristics. NNs in power electronics and AC 

drives have been investigated, including in speed estimation. 

NN technique estimates speed fairly well and is robust to 

parameter variation. For better performance, an NN speed 

estimator should be trained sufficiently with various 

patterns. Fuzzy logic (FL) can control various parameters of 

real-time systems. Its combination with NNs gives 

significant results. NNs can learn from data but 

understanding that knowledge is difficult, especially in 

giving meaning to each neuron and each weight [21-23].  

Fuzzy-rule models are easier to understand because they use 

linguistic terms and the IF-THEN rule structure, but FL 

cannot learn on its own. Its learning and identification adopt 

techniques from fields such as statistics and system 

identification. NNs can learn; merging it with FL is only 

natural. Merging NN‟s learning with FL‟s knowledge 

representation is a hybrid technique called „neuro fuzzy 

networks‟ [23]. ANFIS design starts with a pre-structured 

system; DOF for learning is thus limited, i.e., the MF of the 

input variables and the output variables contain more 

information that NN has to drive from sampled data sets. 

Knowledge on the systems being designed can be used 

straightaway. Part of the system can be excluded from 

training. ANFIS is thus more effective. The rules are 

linguistic, easing analysis and interpretation of intermediate 

results. Rules can be modified during training and 

optimization can be manual. ANFIS also supports TS-based 

systems. To start ANFIS learning, a training data set 

containing the desired input/output data pairs of the target 

systems to be modelled it. The design parameters to any 

ANFIS controller are viz., number of data pairs, training 

data set, checking data sets, fuzzy inference systems for 

training, number of epochs to be chosen to start the training, 

learning results to be verified after mentioning the step size 

[24-28].  

In this work, the following is the general ANFIS control 

structure for the control of any plant. The structure contains 

the same components as does FIS, except for the NN block. 

The network structure is a set of units (and connections) 

arranged into five connected network layers, viz., l1 to l5.  

Layer 1: This layer consists of input variables (MFs), viz., 

inputs 1 and 2. Triangular or bell-shaped MF can be used 

here. This layer just supplies the input values i x to the next 

layer, where I = 1 to n.  

Layer 2: This layer (the membership layer) checks the 

weight of each MF. It receives the input values i x from the 

1st layer and acts as MF to represent the fuzzy sets of the 

input variables. It also computes the membership values 

specifying the degree to which the input value i x belongs to 

the fuzzy set, inputting the next layer.  

Layer 3: Called the rule layer, each node (neuron) in it pre-

condition matches the fuzzy rules, i.e., computing the 

activation level of each rule, the number of layers equalling 

the number of fuzzy rules. Each node calculates the 

normalized weights.  

Layer 4: Called the defuzzification layer, it provides the 

output values y resulting from rule inference. Connections 

between layers l3 and l4 are weighted by the fuzzy 

singletons that represent another set of parameters for the 

neuro fuzzy network.  

Layer 5: Called the output layer, it sums up all the inputs 

from layer 4 and transforms fuzzy-classified results into 

crisps (binary).  

The ANFIS structure is tuned automatically by least-square 

estimation and back propagation algorithm. The algorithm 

shown above is used in the next section to develop the 

ANFIS controller to control the various parameters of the 

induction motor. ANFIS‟s flexibility enables its use in many 

control applications. 



                             International Journal of Advanced Computing, ISSN:2051-0845, Vol.46, Issue.3               1321 

 

© RECENT SCIENCE PUBLICATIONS ARCHIVES| June 2013|$25.00 | 27702482 | 

*This article is authorized for use only by Recent Science Journal Authors, Subscribers and Partnering Institutions* 

8. THE MODEL in VIRTUAL REALITY 

The requirements for design in VRML are explained in 

finite processing allocations, autonomy, consistent self-

registration and calculability. Design in VRML depends on 

the designer‟s information and his imagination of the object. 

VR design choices are standard configurations (sphere, 

cone, cylinder, etc.) and free-form (the indexed face set 

button is selected, to get many configurations with points 

that can be rearranged). Every real-form design is 

considered free-form designing, which starts with building 

parts one by one and checking the shape against a related, 

real manipulator part. That robot part cannot be simulated in 

VR when the standard shape from the VR library is used, 

where they are not uniform shape. The design uses the 

indexed face set in VR. The next design step is connecting 

all the parts to produce the object and to limit the object‟s 

point of origin. This job was made by setting the first shape 

(e.g. the base) and then connecting the next shape (joint 

two) in the “children” button; the same procedure is 

repeated with other parts. Fig. 1 is the design, in full VR, of 

a SCARA robot with vacuum handling wrist [29-31]. 

 

 

 

 

 

 

 

 

 

Fig. 1. A SCARA robot left arm, in VR view through 

Matlab 

9. ANFIS CONTROLLER DESIGN 

A controller is a device controlling each and every system 

operation through the decisions it makes. A control system 

brings stability during disturbances, safeguarding from 

equipment damages. It may be hardware-based, software-

based, or both. This section develops an ANFIS control 

scheme (see Fig. 2) for SCARA robot parameters such as 

speed, accuracy, envelop and high performance.  Fuzzy 

logic is one of the successful applications of fuzzy set in 

which the variables are linguistic rather than the numeric 

variables. Linguistic variables, defined as variables whose 

values are sentences in a natural language (such as large or 

small), may be represented by fuzzy sets. Fuzzy set is an 

extension of a „crisp‟ set where an element belongs to either 

a set (full membership) or to none (no membership). Fuzzy 

sets allow partial membership, i.e., membership to more 

than one set. 

 

 

 

 

Fig. 2: The ANFIS control scheme for speed control of 

the IM 

A fuzzy set A of a universe of discourse X is represented by 

a collection of ordered pairs of generic element and its 

membership function μ : X → [ 0 1], which associates a 

number μA(x) : X → [ 0 1] to each element x of X. An FLC 

uses a set of control rules called fuzzy rules,  

Table 2 

The rule base for speed control 

 

expressed among the linguistic variables as conditional 

statements. The basic structure of this work‟s ANFIS 

controller comprises 4 blocks: fuzzification, knowledge 

base, neural network, and de-fuzzification; each will be 

explained briefly in the next paragraphs. The inputs to the 

ANFIS controller, i.e., the error and the change in error, are 

modelled through Eqn. (51) as  

ΔE\E NB NM NS ZE PS PM PB 

NB NB NB NB NB NM NS ZE 

NM NB NB NM NM NS ZE PS 

NS NB NM NS NS ZE PS PM 

ZE NB NM NS ZE PS PM PB 

PS NM NS ZE PS PS PM PB 

PM NS ZE PS PM PM PB PB 

PB ZE PS PM PB PB PB PB 
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Where wref is the reference speed, wr the actual rotor speed, 

e(k) the error, and Δe(k) the change in error. The 

fuzzification unit converts the crisp data into linguistic 

variables, given as inputs to the rule-based block. The set of 

49 rules are based on past knowledge/experiences in the 

rule-based block, which connects to the NN block. Back 

propagation algorithm trains the NN to select the proper set 

of rule base. In developing the control signal, the training is 

very important for selection of the proper rule base. 

Selection, and then firing of the proper rules, generates the 

control signal needed for optimal outputs. The output of the 

NN unit is given as input to the de-fuzzification unit and the 

linguistic variables are re-converted into numeric data, as 

crisps. In fuzzification, the crisp variables, the speed error, 

and the change in error are converted into fuzzy variables or 

linguistics variables. The fuzzification maps the 2 input 

variables to linguistic labels of the fuzzy sets. The fuzzy 

coordinated controller uses the linguistic labels. Each fuzzy 

label has an associated MF. Triangular MF was used here 

(see Fig. 3-a,b). The inputs are fuzzified through the fuzzy 

sets and given as input to the ANFIS controller. Table II 

lists the rule base for selection of the proper rules through 

back propagation algorithm. 

 

                                                                                (52)                                                                            

 

 

The control decisions are based on the fuzzified variables in 

Table 2. The inference uses a set of rules in determining the 

output decisions. As there are 2 input variables and 7 

fuzzified variables, the controller has a set of 49 rules for 

the ANFIS controller. From the 49 rules [Fig. 4-c,d], the 

proper rules are selected by NN training helped by back-

propagation algorithm, before the selected rules are fired. 

Further, it has to be converted into numerical output, i.e., 

they have to be de-fuzzified. This process is defuzzification, 

which produces a quantifiable result in FL. 

Defuzzification transforms fuzzy set information into 

numeric data information. Methods of defuzzification 

include centre of gravity, centre of singleton, maximum, 

marginal properties of centroid, etc. This work used the 

centre-of-gravity method. The output of the defuzzification 

unit generates the control commands that are given as input 

(crisp input), through the inverter, to the plant. Any 

deviation in the controlled output is feedback and compared 

with the set value and the error signal generated, and given 

as input to the ANFIS controller, which restores the output 

to the normal value, maintaining system stability. Eqn. (52) 

gives the controlled output signal y, which is the controller‟s 

final output and is the weighted average of the proper rule-

based outputs selected by the back-propagation algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig. 3. Learning and analysis of the ANFIS controller 

10.SIMULATION RESULTS & DISCUSSION 

Fig. 4 is the Matlab Simulink R2012a VR model for the 

neuro-fuzzy controller tracking the SCARA trajectory. 

Starting off the simulations is the invoking of the 49-fuzzy-

rule set from the Matlab command window; the fuzzy file 

where the rules are written with T-S control strategy 

incorporated is opened, then the fuzzy editor (FIS) dialogue 

box opens (see Fig. 3). The .fis file (yousif_FZ_Des) is 

imported through the command window from the source, 

and then opened (through file-open command) in the fuzzy 

editor dialog box. Figs. 4 a-f shows opening of the file 

activating the TS fuzzy-rule file. The data is exported to the 

workspace, and the simulations are run for e.g., 60s.  

The fuzzy MF editor is next obtained from the menu bar, 

through view membership command (see Figs. 3 a-b). The 

rule-view command enables viewing of the TS-fuzzy rules 

written. It is the pictorial rule viewer for the 2 inputs and 1 

output. Post preliminary operations, the VR model is called 

up through the interface block between it and Matlab. Fig. 

4e shows the ANFIS editor opening in the command 
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window. The workspace-data variables are loaded onto the 

ANFIS editor (see Figs. 3 a-f). The .fis file is next generated 

in the ANFIS editor through loading of the workspace data. 

Once the .fis file is generated, the ANFIS has to be trained 

properly through a proper algorithm with enough epochs. In 

rule-training, this work used back-propagation algorithm 

with an appropriate number of epochs. The 2 items are 

selected in the train window of the ANFIS editor, and the 

NN is trained for proper-rule-base selection. Next the 

trained data is exported to the workspace, through file-

export command. Fig. 4f is the surface plot for error signal 

and the change in output error. The ANFIS controller 

designed trained the NN through the fuzzy-rule base, to 

select the proper and optimal rule. The hidden layers use 

7x7 rules. Neuron-1 connects to 7 fuzzy rules, as does 

Neuron-2. The hidden layers have 49-49 neurons selecting 

the proper rule base. The 49 fuzzy rules are fired, de-

fuzzified output obtained as output neuron. Through the 

value of the calculated command, the de-fuzzified output 

generates the firing pulse to be applied to the actuator of 

each motor joint. Post-simulation, the performance of the 

SCARA is evaluated through its movements, which are 

recordable in video or photograph and observable according 

to scope. 

The control system with intelligent controller for the 

industrial-application SCARA, with the joints connected, in 

VR modeling (see Fig. 2), was simulated by using Matlab 

R2012a. The results prove the effectiveness of the proposed 

neuro-fuzzy controller. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Simulation of the Intelligent Controller for the 

Virtual-Reality-Verified Industrial-Application SCARA 

Robot 

The highly accurate model of the system shows the drive 

speeding up with faster dynamism. The response 

characteristics curve of the proposed neuro-fuzzy controller 

shows, as compared with [3], [4], [5], faster settling and 

reaching of steady state. Figs. 5 a-f show the robot trajectory 

in a factory application of quality-control defect screening. 

Defective items are selected by an electro photo sensor with 

a weight measurement sensor that limits failure in weighing 

the pieces in the production line. Compared with other 

methods, the ANFIS control achieves system stability faster 

through the ANN training and use of the proper rule-base. 

The desired trajectory is accurately achieved through 

accurate positioning and orientation of the end-effector (see 

Figs. 5 a-f). 

 

 

 

  

 

 

 

 

Figs. 5 (a-f): Movements of the SCARA in production-

line screening 

 

 

 

 

 

 

 

 

 

Fig 6. Controlled signal for movement robot joints and 

environment 

Fig. 6 shows the rotation signal of the SCARA joints and 

translation of the gripper movements through a sixty-second 

delivery-period simulation test. The SCARA very accurately 



                             International Journal of Advanced Computing, ISSN:2051-0845, Vol.46, Issue.3               1324 

 

© RECENT SCIENCE PUBLICATIONS ARCHIVES| June 2013|$25.00 | 27702482 | 

*This article is authorized for use only by Recent Science Journal Authors, Subscribers and Partnering Institutions* 

detects defective items as signaled by the photoelectric 

sensor before transferring them to another conveyor, which 

returns them. The SCARA moves five defective pieces per 

minute.  

11. CONCLUSIONS 

The results verify successful mathematical modeling of the 

SCARA and its servo-actuator dynamics. Accurate 

equations of the forward and inverse kinematics will benefit 

investigation of the SCARA parameters. The SCARA 

Simulink model has been developed, as its ANFIS 

controller, which can be used in tasks as complex as, e.g., 

production-line screening. ANFIS has effective computation 

and works well with linear, optimization, and adaptive 

techniques. Compared with other control strategies, it 

operates much faster. The ANFIS controller developed here 

settles and stabilizes quickly and has very good dynamic 

response. The use of photoelectric sensor as sensing element 

in the control system increased effectiveness. This sensor 

has sufficient real specification for its practical 

implementation in the control system proposed. 
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