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CIVIL & ENVIRONMENTAL ENGINEERING | RESEARCH ARTICLE

Optimizing of predictive performance for
construction projects utilizing support vector
machine technique
Firas Kh. Jaber1, Faiq M. S. Al-Zwainy2* and Saba W. Hachem2

Abstract: Construction projects still face the old–new problem of delivering the
projects within the predefined time and cost. This problem becomesmore complicated
with when addendums and variations are considered during the projects. This study
aimed at developing an artificial intelligent model using support vector machine (SVM)
technique to predict the time and cost indices of projects. Data from 21 tunnel projects
implemented in Kurdistan, Iraq were collected and used in this study. The input data
include five variables, namely contract value, contract duration, number of change
orders, number of conflicts, and classification of company.WEKA––a set of software for
machine learning and data mining––developed at the University of Waikato in New
Zealand was used to build SVM model to predict the time and cost indices. The
collected data were split by default into a training set of 65%, a testing set of 10% and
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a validation set of 25%. The results show that SVM model I successfully predicted the
cost index not only for the trained data, but also for projects with input parameters out
of the range of the training inputs. Mean Absolute Percentage Error (MAPE) and
Average Accuracy (AA) for SVM prediction of cost index were found to be 13.9% and
86.1%, respectively. The SVM model II accurately predicted the time index with MAPE
and AA of 3.4% and 96.6%, respectively.

Subjects: Civil Engineering; Project Management; Artificial Intelligent; Support Vector
Machine

Keywords: cost index; time index; tunnels projects; mean absolute percentage errors;
average accuracy

1. Introduction
Construction projects are characterized by their complex nature. Hence, decision makers in the
construction industry face many challenges due to the limited information and data. Generally,
decision-making depends on two important elements: personal experience and the quality of
accumulated knowledge Cheng and Andreas (2010). In addition to the technical requirements of
drawings and specifications, the successful projects should satisfy the economical requirements,
which mainly consist of time and cost boundaries. It can be stated that cost and time are the most
important elements of the project, considering that the poor performance in the implementation
of construction projects leads to deviation of the quality of these projects on the one hand and
deviation in time and cost of the projects on the other hand. Olawale and Sun (2010).

Cost index (CI) and time index (TI) are important parameters that are used to predict the perfor-
mance of construction projects. These two parameters take into consideration the probable project
performance and risks. Construction projects are affected by a wide range of variables that influence
the duration and total cost of projects. The two indices are related to each other and they can be good
foundation for solving problems related to project management (Csordas 2017). Contractual docu-
ments indicate that time is the essence of the contract (Rick and Jim 2015). From the point of view of
the owner, the time performance indicator of the construction project is the completion of the project
less than the planned time, and thus the success of the construction project (Meeampol and Ogunlan
2006). Predictability of TI was defined as the difference between planned duration and actual duration
expressed as a percentage of the planned duration (Zealand 2005):

TI ¼ Ta-Tpð Þ = Tp � 100% (1)

where TI is the time performance, Ta is the actual duration, and Tp is the planned duration.

The cost performance indicator is an important indicator for all stakeholders in project manage-
ment. The CI is considered to be positive if the planned costs are lower than the actual costs and
vice versa (Rick and Jim 2015). The CI can be used to calculate the real performance of construc-
tion project against the estimated performance (Meeampol and Ogunlan 2006). Predictability of
cost performance in construction projects was defined as the difference between the actual cost
and the contractual cost, and thus can be expressed as a percentage of the contractual cost as
follows (Zealand 2005):

CI ¼ Ca-Cpð Þ=Cp � 100% (2)

where CI is the cost performance, Ca is the actual cost, and Cp is the contractual (planned) cost.

Predicting construction project costs and estimating price escalation are major stages for
construction project contractors and owners. Construction project costs are always subject to
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fluctuations that trend toward increasing over the long term, which make the costing process
a challenging task. CI has been widely used to forecast project costs.

Through the previous studies and research on the subject of artificial intelligence, it was found
that artificial intelligence has the ability to overcome all difficulties and obstacles in the various
processes in the management of construction projects. Despite the many techniques of artificial
intelligence attached to the subject of prediction, it did not reach the peak of its potential because
of the omission of state-of-the-art techniques and the inappropriate handling of missing data
(Chongchong, Fourie, Ma, and Tang 2018). The number of studies and research on the CI and time
in the field of project management is limited, and the most prominent previous studies have been
obtained are discussed below.

Moon and Shin (2017) developed time-series forecasting model to have significant impact on the
CI. The forecast result obtained using the interrupted time series forecasting model was better
than that using the conventional forecast models; the accurately forecasted CI using the pre-
sented model will help in budget planning and evaluating the bid as well as estimate the risk of
future projects.

In this study, suggest a novel approach for the improved forecast of construction engineering
projects depended on nonesuch machine learning algorithms.

2. Research objective
Main aim of this study is to develop of the forecasting model for predict the performance of CI and TI
using support vector machine (SVM) technique for tunnel projects at execution and monitoring stage.

3. Research important
In developed countries, tunnels project is very important because it represents one of infrastructure
projects and it has a prominent civilized worth. Also, the tunnels projects contribute greatly to solving
the problem of traffic congestion, in addition to the movement of individuals and vehicles, and goods
transportation. Also, tunnels projects are a clear demonstration of urban development in the country.

There are many methods and techniques used in the field of forecasting in the project imple-
mentation stage, but most of these techniques suffer from many disadvantages and shortcom-
ings. The most important of which is lack of precision. Therefore, the project management sector in
the Kurdistan region of Iraq in dire need of new, sophisticated and effective techniques to predict
the performance of tunnels projects must be characterized by accuracy, simplicity and flexibility.
This study is important because it provides a new method for measuring the performance of
construction projects and evaluates the performance of tunnels projects at execution and mon-
itoring stage by using an intelligent mathematical model such as SVM Technique.

The research as adds a reference to knowledge field for both academic researches and stake-
holders in evaluation of the performance in infrastructure projects.

4. Research limitations
This study was conducted in Kurdistan, Iraq for the period from April to 2017 to May 2018.

5. Research hypotheses
Thus, based on this research the following hypotheses have been proposed:

(1) Null hypothesis (H0): SVM is a powerful technique to predict the performance of CI and TI for
tunnel projects at execution and monitoring stage.

Jaber et al., Cogent Engineering (2019), 6: 1685860
https://doi.org/10.1080/23311916.2019.1685860

Page 3 of 13



(2) Alternatives hypothesis (H1): SVM is not a powerful technique to predict the performance of
CI and TI for tunnel projects at execution and monitoring stage.

6. Research methodology
Research methodology used to accomplish the aim is summarized in Figure 1.

Figure 1. Research
methodology.
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6.1. Literature review
The purpose of the literature review was to cover the subject of the study fully through the access to
books and research, master’s thesis and doctoral studies and studies on the subject of evaluating
the performance of construction projects that were published in the periodicals and conferences.

One of the important machine-learning theories is SVM that is promptly founded on learning
algorithms and uses regression method (Liu, Yan, Zhao, and Yue 2016). The foundations of SVM
were developed by Vapnik (1995)at Bell Laboratories. In general, the technology of SVM is used
in many fields of engineering. The most important field is computer and information systems
and the field of statistics and mathematics and the field of engineering and project manage-
ment and others.

Artificial intelligence was found to have the ability in prediction of many engineering para-
meters. In project management, artificial intelligence was used to predict the duration, cost,
productivity, earned value management, cash-flow, CI and TI. SVM can be classified into the
following types (Cheng and Andreas 2010).

6.1.1. A- classification SVM type 1
For this type of SVM, training involves the minimization of the error function:

1
2
wTwþ C ∑

N

i¼1
�i (3)

Subject to the constraints:

yiðwTϕðxiÞ þ bÞ � 1� �i and �i � 0; i ¼ 1; ::: ;N

where C is the capacity constant, w is the vector of coefficients, and b is a constantthat represents
parameters for handling no separable data (inputs). The index i label the N training cases. Note
that y 2 �1 represents the class labels and xi represents the independent variables.

6.1.2. B- classification SVM type 2
In contrast to Classification SVM Type 1, the Classification SVM Type 2 model minimizes the error
function:

1
2
wTw� vρþ 1

N
∑
N

i¼1
�i (4)

Subject to the constraints:

yiðwTϕðxiÞ þ bÞ � ρ� �i; �i � 0; i ¼ 1; ::: ;Nand ρ � 0

Also, SVM can be classified based on regression method.

The task is then to find a functional form for f that can correctly predict new cases that the SVM
has not been presented with before. This can be achieved by training the SVM model on a sample
set, i.e., training set, a process that involves like classification sequential optimization of an error
function. Depending on the definition of this error function, two types of SVM models can be
recognized (Cheng and Andreas 2010):

6.1.3. A- regression SVM type 1
For this type of SVM, the error function is given by

1
2
wTw� C ∑

N

i¼1
�i þ C ∑

N

i¼1
�� i (5)

which we minimize subject to:
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wTϕðxiÞ þ b� yi � εþ �i
�

yi �wTϕðxiÞ � bi � εþ �i

�i; �i
� � 0; i ¼ 1; :::;N

6.1.4. B- regression SVM type 2
For this SVM model, the error function is given by

1
2
wTw� C vεþ 1

N
∑
N

i¼1
ð�i þ �i

�Þ
 !

(6)

which we minimize subject to:

wTϕðxiÞ þ b� yi � εþ �i

yi � ðwTϕðxiÞ þ biÞ � εþ �� i

�i; �
�
i � 0; i ¼ 1; :::;N; ε � 0

6.2. Data collection and identification of variables
Data of 21 tunnel projects performed in Kurdistan, Iraq were used in this study. All the information
was formally obtained from the documents of the projects. In addition, interviews with managers
of the projects were carried out by the authors. The interviews were mainly focused on the possible
factors that affect the cost and time indices.

Table 1. Inputs and outputs of the 21 tunnel projects

Project ID CV DV CCC CC NOC TI CI

P.1 14 390 3 1 7 38.80 0.12

P.2 9 360 3 1 2 98.47 1.29

P.3 17 400 2 2 12 197.91 0.21

P.4 23 450 2 2 17 142.28 3.07

P.5 28 460 1 3 23 248.77 4.50

P.6 30 480 1 3 25 309.26 17.14

P.7 15 390 3 1 10 113.51 4.54

P.8 25 450 1 3 20 87.75 3.70

P.9 28 460 1 3 23 63.35 7.40

P.10 17 400 2 2 12 35.45 3.40

P.11 21 410 2 2 15 183.42 8.89

P.12 30 480 1 3 24 57.55 14.47

P.13 21 410 2 2 14 169.89 8.05

P.14 19 410 2 2 13 124.59 0.59

P.15 15 390 3 1 9 181.42 10.19

P.16 9 360 3 1 3 189.99 10.06

P.17 12 390 3 1 6 134.58 2.50

P.18 19 410 2 2 13 154.13 0.59

P.19 15 390 3 1 9 161.66 10.19

P.20 9 360 3 1 3 135.00 10.06

P.21 12 390 3 1 6 133.46 2.50

Max. 30 480 3 3 25 309.25 17.14

Min. 9 360 1 1 2 35.45 0.12

SD%. 6.8 37.45 0.813 0.813 7.178 67.00 4.00

Ave. 18.47 411.4 2.190 1.809 12.66 141.1 5.87

Jaber et al., Cogent Engineering (2019), 6: 1685860
https://doi.org/10.1080/23311916.2019.1685860

Page 6 of 13



On the basis of the literature review of the cost and time indices and results of the interviews
with the managers of the 21 tunnel projects, the following five parameters were selected as the
main factors that affect the cost and time indices:

(1) Contract Value (CV): the CV of the 21 projects was ranged from 9 to 30 billion Iraqi dinars
(B, ID).

(2) Contract Duration (CD): the CD of the projects ranged from 360 to 480 days.

(3) Number of Change Orders (NCO): All the projects included from associated with change in
cost and time of the projects were obtained from the projects’ documents. The NCO was
ranged from 2 to 25.

(4) Conflicts (CC): CC can be occurred in the site because of many reasons. The CC were
classified into complicated CC, moderate CC, and simple CC and they were assigned numbers
of 1, 2, and 3, respectively.

(5) Classification of Contracting Company (CCC): Iraqi regulations classify contracting compa-
nies in descending order from Class 1 to Class 4. Only the three higher classes were involved
in construction of the 21 tunnels. Numbers of 1, 2, and 3 were assigned to companies of
class 1, 2, and 3, respectively.

These parameters were used as inputs in the SVMmodels, while TI and CI were used as outputs. Table
1 depicts the inputs and outputs of the 21 tunnel projects. The table also contains some statistical
functions such as standard deviation (SD) and average (Ave.) of input and output parameters.

The table clearly shows that the TI ranged from 35 to 309%, meaning that durations of the projects
were extended as minimum as one-third of the CD. The time extension reached as maximum as three
times the CD. The CI of the projects ranged from 0.12 to 17.14% with an average and standard
deviation of 5.87% and 4%, respectively. The table also depicts some statistical measures including
standard deviation and average values of the input and output parameters.

6.3. WEKA software
There are many programs that use SVM. The most popular programs are MATLAB, LIBSVM,
STATISTICA, DTREG, SVM light, WinSVM, and WEKA and others (Al-Zwainy and Neran 2016).

The researcher used the WEKA program version 3.7.13©1999-2015 for the following reasons:

(1) WEKA is available and open source. Also, it can be obtained from University of Waikato, New
Zealand.

(2) WEKA workbench is a collection of state-of-the-art machine-learning algorithms and data
pre-processing tools.

(3) WEKA is easy and simple to use.

(4) WEKA can be run in any operating system such as Macintosh, Linux, and Windows.

(5) WEKA offers identical interfaces to many learning algorithms.

(6) WEKA contributes to the organization and coordination of data and provides integrated
support for learning systems.

6.4. Building and development SVM models
The development stage of the model is an important stage in the design of the SVM model. This
stage includes the operation of the developed model and training to many the times with valida-
tion of the model.

To capture the relationships between the inputs and output, the SVM model requires to be
trained. Data of the 21 tunnel projects were divided into three groups; training group, testing group
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and validation group. The training group included data of 13 projects, while testing and validations
groups included 5 and 3 projects, respectively. The distribution of projects on the groups was
randomly performed using the default parameters of WEKA software.

“Kernel” in machine learning refers to Kernel trick––a tool that uses a linear classifier to solutions
of non-linear problems. It entails transforming linearly inseparable data to linearly separable ones.
Kernel function is applied on each data instance to transfer the original non-linear relationship into
a higher-dimensional space in which it becomes separable. There are many kinds of kernel
functions that are commonly used including Sigmoid, Polynomial, Radial basis function, triangle,
Epanechnikov, Silverman, tricube, cosin, triweight, quadratic, Gaussian, and Logistic (Al-Zwainy,
Eiada, and Khaleel 2016).

The reliability and accuracy of each kernel function were measured using root mean square error
(RMSE), given in Equation (1), and correlation coefficient (R2) (Jaber, Hachem, and Al-Zwainy 2019):

RMSE ¼ 1
n
∑
i¼1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðYact� YpredÞ2

q
(7)

where Yact is the actual value of the output variable, Ypred is the value of output predicted by SVM,
and n is the number of data point.

Table 2 shows the RMSE and correlation coefficient of all kernel functions. It can be seen that the
polynomial function has the lowest RMSE and highest correlation coefficient of 0.05% and 97%,
respectively. Hence, polynomial function was used to model the prediction time and cost indices.

6.5. Parameters of SVM model
The insensitivity zone ε and the penalty parameter C are among the most important learning
parameters in the development of the SVM model. These parameters determine the trade-off
between the training error and VC dimension of the model. Trial-and-error approaches were used
to determine the optimum values of ε and C (Kecman 2001).

The optimum C value was determined through measuring the effect of different values of C on
RMSE and R2 of the SVM having the polynomial function and structure of 65% training, 25% testing
and 10% validation sets. RMSE and R2 of various values of C parameter are shown in Figures 2 and 3,
respectively.

Table 2. RMSE and correlation coefficients of various kernel functions

Kernel types RMSE Correlation of coefficient %
Sigmoid 0.06 95.33

Polynomial 0.05 97.00

Radial basis function 0.09 95.5

Triangle 0.11 95.0

Epanechnikov 0.23 94.9

Silverman 0.20 94.5

Tricube 0.14 94.0

Cosin 0.15 93.8

Quadratic 0.17 93.4

Gaussian 0.20 93.2

Logistic 0.18 93.0

Triweight 0.19 92.5
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C value of 9 resulted in the lowest RMSE of 0.05 and the highest correlation coefficient of 97.5% as it
can be seen in Figures 2 and 3, respectively. Hence, C value of 9 was selected.

The same approach was applied to select the optimum value of ε. Figures 4 and 5 show the
effect of various values of ε on RMSE and correlation coefficient of SVM Model.

Figures 4 and 5 show that an ε value of 0.005 resulted in the lowest RMSE value (0.06) and the
highest correlation coefficient of 98%. Hence, an ε value of 0.005 was selected.

The type of kernel function (polynomial) and the values of C and ε were fed to the WEIKA software
and the weights of the inputs and outputs were obtained from the software report. Table 3 depicts the
weights of the input and output parameters.

The report also provided the value of θ1 which is the weight from node in the hidden layer to
node in the output layer. The value of θ1 was found to be (−2.00006). On the basis of values of

Figure 2. Effect of C value on
RMSE of model.

Figure 3. Effect of C value on
correlation coefficient of
model.
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weight of inputs and outputs obtained from the run of the SVM, the predicted cost and time indices
can be calculated as follows:

CI ¼ 0:001233þ ½ð1:377 � CVÞ þ ð0:687 � CDÞ þ ð0:998 � NCOÞ þ ð0:777 � CCÞ þ ð0:543 � CCCÞ�f g
� 0:0046

(8)

Figure 4. Effect of ε values on
RMSE of SVM model.

Figure 5. Effect of ε values on
correlation coefficient of SVM
model.

Table 3. Weights of inputs and outputs extracted from WEKA software

Parameter Inputs Outputs

CV CD NCO NOC CC CI TI

Weight 1.377 0.687 0.998 0.777 0.543 0.000342 0.0046
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TI ¼ 0:354486þ ½ð1:377 � CVÞ þ ð0:687 � CDÞ þ ð0:998 � NCOÞ þ ð0:777 � CCÞ þ ð0:543 � CCCÞ�f g
� 0:000342

(9)
6.6. Verification SVM model
To verify the developed model, the researcher used five new projects as shown in Table 4.

Summary of CI and TI by SVM for verification of predicting model is shown in Table 5. In the
table, the second column presents CI (actual and predicting), and the third column represents TI
(actual and predicting), where actual values CI and TI can be obtained using WEKA software by
applying SVM equations.

Figure6 shows the correlation coefficients of the TI and theCI78.7%and83.4%, respectively, as these
results show that the developed SVMmodel has an effective predictability of actual values in the future.

6.7. Validation SVM model
This stage presented the validation of the SVM model. The performance measures are important to
evaluate model; the following two parameters can be used to calculate the SVM model performance.

Table 4. Verification of SVM model

Projects CV CD NCO CC CCC Actual TI Actual CI

Prj.1 10 150 2 2 5 0.387963 0.001233

Prj.2 10 300 2 1 1 0.984666 0.01292

Prj.3 15 250 2 2 9 1.979104 0.002094

Prj.4 18 300 2 2 6 1.422789 0.030683

Prj.5 15 350 1 3 10 2.487738 0.044986

Table 5. Comparison between actual and predicting value for (CI) and (TI)

Projects Cost index Time index

Actual Predicting Actual Predicting

Prj.1 0.001233 0.00441051 0.387963 0.774069

Prj.2 0.01292 0.009015156 0.984666 1.116414

Prj.3 0.002094 0.007978132 1.979104 1.039314

Prj.4 0.030683 0.009667804 1.422789 1.164937

Prj.5 0.044986 0.011153144 2.487738 1.275369

Correlation between actual
and predicting value

0.834117 0.78673

Figure 6. Correlation between
actual and predicting value for
CI and TI.
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(1) Mean Absolute Percentage Error (MAPE)

The MAPE can be calculated through the equation of the Boussabaiena et al. (1999) through which
it is possible to know the amount of error allowed in the SVM model developed (AL-Somaydaii,
Aljumaily, and AL-Zwainy 2018):

MAPE ¼ ∑
i¼1

n

jA� Ej
A

� 100% nn
� �

(10)

(2) Average Accuracy (AA):

The model’s AA% can be calculated by mathematical equation (Equation 6) discovered by Wilmot
and Mei (2005), (Al-Zwainy, Al-Suhaily, and Saco (2015), and Al-Zwainy and Neran (2015):

AA% ¼ 100�MAPE (11)

The results of the comparative study of the SVM model show that the MAPE of the CI and TI were
13.95902% and 3.43285%, respectively, while AA% for the CI and TI were 86% and 96.572%,
respectively, so the developed SVM model is very effective in future prediction (see Table 6).

7. Conclusions
To evaluate the performance of the tunnels projects in the Republic of Iraq, a smart model was
developed using the SVM technique to predict the CI and the TI based on five factors (CV, CD, NCO,
CC and CCC). A mathematical equation was derived to measure the CI and TI by AA 86.1% and
96.6%, respectively.
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