See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/329596403

Prediction of mechanical properties of EPON 862 (DGEBF) cross-linked with curing agent (TETA) and SiO 2 nanoparticle based on materials studio

Article in IOP Conference Series Materials Science and Engineering · December 2018 DOI: 10.1088/1757-899X/454/1/012139

di Jasim Al Hasan ay of Basrah				
TIONS 0 CITATIONS				
	ty of Basrah TIONS 0 CITATIONS	ry of Basrah TIONS 0 CITATIONS DFILE	ry of Basrah TIONS 0 CITATIONS DFILE	ry of Basrah TIONS 0 CITATIONS DFILE

of the authors of this publication are also working on these related projects

Electrical conductivity of Fe View project

The effect of pH and TDS on the corrosion rate of carbon steel View project

PAPER • OPEN ACCESS

Prediction of mechanical properties of EPON 862 (DGEBF) cross-linked with curing agent (TETA) and SiO_2 nanoparticle based on materials studio

To cite this article: N H J Al Hasan 2018 IOP Conf. Ser.: Mater. Sci. Eng. 454 012139

View the article online for updates and enhancements.

IOP ebooks[™]

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

IOP Conf. Series: Materials Science and Engineering 454 (2018) 012139 doi:10.1088/1757-899X/454/1/012139

Prediction of mechanical properties of EPON 862 (DGEBF) cross-linked with curing agent (TETA) and SiO₂ nanoparticle based on materials studio

N H J Al Hasan¹

¹ Department of Engineering Material, College of Engineering, University of Basrah, Iraq

Abstract. The present study focuses on the prediction of mechanical properties of SiO_2 nanocluster reinforced epoxy resin (DGEBF) cross-linked with curing agent W (TETA). The MD models of the reinforced epoxy were built using the amorphous module of Material Studio 7.0 (Accelrys Inc.). The mechanical properties of this cross-linked structure were determined using MD simulations. SiO₂ qurtiz with different aspect ratios of weight percent (6%, 8% and 10%) in order to construct amorphous unit cells of SiO₂-Epoxy nanocomposites. The SiO₂-Epoxy nanocomposites system undergoes NPT (constant number of atoms, pressure and temperature) ensemble with applied uniform strain field during MD simulation to obtain density curve, cell size diagram and the results file.

1. Introduction

The aerospace epoxy resin EPON 862 produced by Hexion Specialty Chemicals Inc. is good mechanical properties for composite applications. Two reactive sites exist in the EPON 862 monomer, during cross-linking process either one or both of these reactive sites of EPON 862 create new bonds with any of the four reactive sites in Triethylenetetramine TETA (nitrogen groups red ball groups) hardener when they come close enough to each other within a certain distance[1] as shown in Figure 1. The ball-and-stick model of the cross-linked epoxy repeat unit is built by Materials Studio software, typical amorphous cross-linked epoxy network consists of 3 EPON 862 neat resin molecules and TETA curing agent molecules, Make the cross-linked epoxy as basic material.

a. EPON 862 and TETA (curing agent) b. the cross-linked epoxy

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

International Conference on Materials Engineering and Science	IOP Publishing
IOP Conf. Series: Materials Science and Engineering 454 (2018) 012139	doi:10.1088/1757-899X/454/1/012139

The EPON 862 is very strong due to its tight linkage due to highly crossing linked polymer chains that form an irreversible network structure, this material is categorized as a thermosetting polymer, it is relatively brittle with low stiffness [2]. When mixing EPON 862 with the hardener, curing of the resin is achieved. Based on molecular mixture calculations with a cure ratio of 3:1, three molecules of resin combine with one molecule of the curing agent.

An extensive literature review was undertaken for EPON 862 cured with TETA by molecular dynamics (MD) simulation, from MD simulations low crosslink density of the epoxy resin voids and impurity inside the epoxy compound may result in the degraded material properties studied by Rai A K, Amit Porwal A and Mishra S B [3], Kim B.ChoI J.,Yu S., Yang S. and Cho M.et al Investigated the effects of crosslink densities on thermo-mechanical properties of thermoset polymeric nanocomposites via molecular dynamics (MD) simulations in the study of [4],they conclusion that the presence of more crosslinks in polymer matrix interphase are weakened.

Arab B, Shokuhfar A [5] utilized the molecular dynamics with COMPASS, PCFF, UFF and Dreiding force fields for calculation of the material properties of cross-linked epoxy polymers, it is results that the COMPASS and PCFF can be reliably used for simulation of cross-linked polymers with calculation of their properties.

2. Simulation details

2.1. SiO₂ nanopartical embedded in epoxy amorphous cell:

By Material Studio 7.0 (Accelrys Inc.), the geometry optimization via Smart method using the Forcite Module for modeling Silica crystals model. Then Sphere with the radius of the particles was set to $10A^{\circ}$, was selected from the build nanocluster dialog. When click the build button for construction a nanocluster, a silicon nanoparticle with many unsaturated bonds of Si and O on the surface was obtained as shown in Figure 2.(a), all of the unsaturated bonds adjust Hydrogen button for simulate the real process of oxidation[6]. SiO₂-nanoparticle without unsaturated bonds is shown in Figure 2(b).

Figure 2. SiO₂-nanoparticle model

2.2. Amorphous unit cell with cross-linked epoxy polymer:

MD simulation was conducted in unit cells consisting of cross-linked EPON 862 resin. A typical amorphous unit cell contains epoxy-curing agent in the ratio of 3:1 was used. For defining the bonded and non-bonded interactions, (Compass II) force field was used. A brief description of simulation is provided below:

The SiO₂ nanopartical were embedded in the three-dimension periodic amorphous unit cells for evaluating bulk elastic properties. In this study, 6%, 8% and 10% of SiO₂ nanopartical by weight was considered in the amorphous unit cell, the results shown in Figure 3. The density of amorphous SiO₂ nanoparticle -epoxy unit cells was kept in the range of not exceeds 1.0 gm/cc. However, this changes

during the molecular dynamic equilibration process. The number of epoxy monomers was determined in such a way which ensures expected weight percentage of SiO_2 nanoparticle in the unit cell. Table 1 shows material configurations with relevant SiO_2 nanoparticle aspect ratio and weight percentage:

Table 1. Number of epoxy molecules and SiO_2 in a unit cell

Material Configuration	Weight percentage of SiO2	Number of Epon molecules Unit cell	Unit cell dimension (A ⁰)
Ι	6%	101	a=b=c=57.7
II	8%	74	a=b=c=52.4
III	10%	58	a=b=c=48.7

a epoxy/6%SiO2

b. epoxy/8%SiO2 8%

c. epoxy/6%SiO2 10% Figure 3. Unit Cell Model of epoxy/SiO2 at different weight percent

International Conference on Materials Engineering and Science

IOP Conf. Series: Materials Science and Engineering **454** (2018) 012139 doi:10.1088/1757-899X/454/1/012139

3.Mechanical Properties Simulation

Select Modules Forcite Calculation to open the Mechanical Properties dialog. The appropriate precision is set and other parameters are kept the default values. The relevant information of the initial parameters, the stiffness matrix and flexibility matrix of the composite, by Reuss, Voigt and Hill formula respectively, bulk modulus and shear modulus was are calculated, Lame constants and the stress along X ,Y and Z direction are obtained from the calculation results files.

The nano-particle reinforced polymer matrix composite is considered as the anisotropic material on microscopic view, while on macro-level is close to isotropic material. So it can be assumed the material is close to isotropic. For isotropic material, the stress-strain relations can be described by two constants Lame λ and μ , which can be expressed as [7]:

$$\lambda = \frac{1}{3}(C_{11} + C_{22} + C_{33}) - \frac{2}{3}(C_{44} + C_{55} + C_{66}) \dots (1)$$

$$\mu = (C_{44} + C_{55} + C_{66}) \dots (2),$$

The common elastic parameters can be expressed by these equations:

$$\nu = \frac{\lambda}{2(\lambda + \mu)} \dots (3), E = \mu \left(\frac{3\lambda + 2\mu}{\lambda + \mu}\right) \dots (4),$$

$$V = {}_{2(\lambda+\mu)} \qquad(5), L = \mu \left({}_{\lambda+\mu} \right) \qquad ...(4),$$

$$K = \lambda + {}_{3}^{2}\mu ,(5) G = \mu \qquad ...(6)$$

4. Results and discussion

4.1. Mechanical Properties Comparison and Analyses

 SiO_2 -epoxy amorphous unit cells were subjected to molecular dynamic equilibration under NPT ensemble (constant number of atoms, pressure and temperature) for 5000 thousand steps of simulation with 1.0 fs time step and temperature of 298 K with 1.0 atm pressure. In order to equilibrate the internal pressure of the system and obtain a stable volume [8]. the results of elastic stiffness matrix are shown in Table 2.

6% weight SiO ₂							
Cij (GPa)	1	2	3	4	5	6	
1	4.2565	-5.5280	-0.1391	1.1747	2.5311	0.6977	
2	-5.5280	-6.4175	-6.4175	0.8554	1.9330	-0.4537	
3	-0.1391	-6.4175	-5.9413	0.3655	1.1730	1.1253	
4	1.1747	0.8554	0.3655	-3.4959	0.7435	0.4116	
5	2.5311	1.9330	1.1730	0.7435	-0.9285	-0.7508	
6	0.6977	-0.4537	1.1253	0.4116	-0.7508	1.4925	
		8	8% weight SiC) ₂			
Cij (GPa)	1	2	3	4	5	6	
1	2.2389	4.5478	5.2813	0.2413	0.1288	-1.8123	
2	4.5478	1.1386	2.2619	0.2992	0.8973	-3.0083	
3	5.2813	2.2619	-0.2744	-0.3605	0.7388	-2.6279	
4	0.2413	0.2992	-0.3605	3.9519	0.5022	-1.5393	
5	0.1288	0.8973	0.7388	0.5022	0.0647	0.7177	
6	-1.8123	-3.0083	-2.6279	-1.5393	0.7177	0.9529	
10% weight SiO ₂							
Cij (GPa)	1	2	3	4	5	6	
1	48.7789	8.3751	10.5926	0.6053	-0.5311	0.3190	
2	8.3751	37.0461	9.7091	0.2639	0.1196	0.0847	
3	10.5926	9.7091	55.1211	2.0672	-1.2032	0.0838	
4	0.6053	0.2639	2.0672	51.3748	-0.3027	-0.6237	

Table 2. The elastic stiffness matrix of epoxy/SiO₂ unit cell

International Conference on Materials Engineering and Science

IOP Publishing

IOP Conf. Series: Materials Science and Engineering 454 (2018) 012139 doi:10.1088/1757-899X/454/1/012139

5	-0.5311	0.1196	-1.2032	-0.3027	21.5979	0.6151
6	0.3190	0.0847	0.0838	-0.6237	0.6151	27.1445

formul	a			Reuss	Voigt	Hill	Compressibility (1/TPa)
6%	weight	Bulk	modulus	0.0000	-3.5617	-1.7809	-444.8762
SiO_2		(GPa)					
		Shear	modulus	0.0000	-0.3065	-0.1532	
		(GPa)					
8%	weight	Bulk	modulus	7.0996	3.0317	5.0656	140.8531
SiO_2		(GPa)					
		Shear	modulus	0.0000	0.3947	0.1973	
		(GPa)					
10%we	eight	Bulk	modulus	21.3451	22.0333	21.6892	46.8491
SiO_2		(GPa)					
		Shear	modulus	23.492	27.5081	25.5004	
		(GPa)					

Table 3. The Compressibility, Bulk modulus and Shear modulus of epoxy/SiO₂ unit cell

It can be seen from Table 1 that the value of C13, C55 and C56(6% weight SiO₂), C33 and C34(8% weight SiO₂),C15, C45 and C46(10% weight SiO₂) are close to zero, which indicates that the polymer model simulated by molecular dynamics is not extreme anisotropic material.

After the initial unit cell was prepared, 100ps of isothermal-isobaric ensemble referred to as NPT simulation at 1 atm with 1fs integration step of time, at room temperature was performed 298K.

By increasing the pressure, the system has been compressed for increase the density and NPT simulation just for once, the compressibility, bulk modulus and shear modulus of $epoxy/SiO_2$ unit cell were shown in Table 3. Curve of the cell density varies with time after simulation is shown in Figure 4, in this figure it can be noted that the density increased as the weight percent of SiO₂ increased at 5ps , its effective density can be increased by roughly 10% as compared to the EPON 862 matrix for 6% noano particles of SiO₂ weight percent.

Figure 4. Forcite dynamic density

International Conference on Materials Engineering and Science

IOP Conf. Series: Materials Science and Engineering 454 (2018) 012139 doi:10.1088/1757-899X/454/1/012139

5. Conclusion

It is observed that the time reducing by using molecular dynamic simulation for studying the additives of SiO_2 particle to the epon 862 cross link TETA, due to the ability of accelery material studio program. As the weight percent increase from 6% to 10% SiO_2 the densities increase, bulk and shear modulus value is maximum in 10% addition.

References

[1] Suyoung Y, Seunghwa Y., and Maenghyo C 2009, Multi-scale modeling of cross-linked epoxy nanocomposites, *J. Polymer.* **50**: 945-952.

[2] Komuves F, Kelkar A D, Mohan R, and Kelkar V A 2011, Prediction of Mechanical Properties of EPON 862 (DGEBF) cross-linked with Curing Agent W (DETDA) and SWCNT using MD Simulations, Structural Dynamics and Materials Conference 19th, Denver, Colorado, 4 - 7.

[3] Rai A K, Amit Porwal A and Mishra S B 2013, Investigation of mechanical properties of epoxy EPON 862 cured with TETA by molecular dynamics, S-JPSET : ISSN : 2229-7111, Vol. 4, Issue 2.

[4] Kim B, ChoI J ,Yu S, Yang S and Cho M 2013, Effect of different crosslink densities on the thermomechanical properties of polymer nanocomposites, *Jeju, Korea J. Advanced in structure engineering and mechanics*, 8-12.

[5] Arab B, Shokuhfar A 2013, Molecular Dynamics simulation of cross-linked epoxy polymers: the effect of force field on the estimation of properties, *J. nano and electronic physics*. **5** No 1.

[6] Bharadwaja S 2012, Molecular dynamics simulations of Si binding and diffusion on the native and thermal silicon oxide surfaces molecular dynamics simulations of Si Binding and diffusion on native and Thermal Silicon Oxide Surfaces, theses(Msc).

[7] Mo Y, Zhang H and Xu J 2014, Molecular dynamic simulation of the mechanical properties of PI/SiO2 nanocomposite based on materials studio *J. chemical and pharmaceutical research*, **6**(6):1534-1539.

[8] Leach A R 1997, Molecular modelling: principles and applications, Addison Wesley Publishing Company.