
International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.6, February 2014

15

Parallelizing RSA Algorithm on Multicore CPU and GPU

 Heba Mohammed Fadhil

Information and Communication Department,
 Al-Khwarizmi College of Engineering, University of

Baghdad Al-Jadriyah, Baghdad, Iraq

Mohammed Issam Younis, Ph.D
Computer Engineering Department,

College of Engineering, University of Baghdad
Al-Jadriyah, Baghdad, Iraq

ABSTRACT

Public key algorithms are extensively known to be slower

than symmetric key alternatives in the a r e a of

cryptographic algorithms for the reason of their basis in

modular arithmetic. The most public key algorithm widely

used is the RSA. Therefore, how to enhance the speed of

RSA algorithm has been the research significant topic in the

computer security as well as in computing fields. With

remarkable increase in the computing capability of the

modern Graphics Processing Unit's (GPUs) as a co-processor

of the CPU, one can significantly benefit from the Single

Instruction Multiple Thread (SIMT) style of computing. This

paper proposes a hybrid system to parallelize the RSA for

multicore CPU and many cores GPUs with variable key size.

In doing so, three variants implementation for the RSA

algorithm are done to facilitate the performance comparison

against Crypto++ library and sequential counterpart. The GPU

implementation gained approximately 23 speed up factor over

the sequential CPU implementation; while the multithread

CPU implementation gained only 6 speed up factor over the

sequential CPU implementation as far as the latency is

concerned. Furthermore, additional speedup could be gained

as far as the throughput is concerned; the throughput gained

for 1024 bits is ~1800 msg/sec; as for 2048 bits is ~250

msg/sec. Due to overlapping of multithread operation

whenever free resources are available. The experiments are

conducted on a laptop with Intel Core I7-2670QM, 2.20 GHz

CPU and Nvidia GeForce GT630M GPU. Results reveal that

the GPU is appropriate to speed up the RSA algorithm.

General Terms

Parallel Processing, Parallel Computing, RSA Algorithm,

SIMT, Multithreading and Concurrent Computing,

Heterogeneous computing.

Keywords

RSA; SIMT; GPU; Parallel algorithms; Heterogeneous

computing.

1. INTRODUCTION
Over the past two decades, with the rapid evolution in the area

of information technology and the internet have created

imaginative applications and technologies along the way.

Recently, we can send a multimedia message, or get one from

almost anyone around the world in a few seconds through the

internet. To guard data transmitted from snooping by someone

other than the receiver. It is desired to hide the message before

it is sent to a non-secure communication channel. This is

achieved through encryption [1] [2]. Due to its distinctive

ability to distribute and manage keys, public key encryption

has become the perfect solution to information security [3].

Public key algorithms (e.g., RSA algorithm) rely essentially

on hard mathematical problems (modular multiplication and

modular exponentiation) of very large integers, ranging from

128 to 2048 bits. With such large numbers, the achievement

of the calculation process will not be quick or easy to

implement [4]. With the rapid developments in hardware and

software technologies, it seems that sequential

implementation of encryption algorithms are not safer and fast

enough. Parallel algorithms on the other hand play a

significant role in maintaining rapid growth. Not only, multi-

core processors, but also a powerful graphics cards are

becoming more and more available [5]. Graphics Processing

Units (GPUs) have been increasingly used as a powerful

accelerator in several high computational demanding

applications due to their flexibility and moderate cost [6]. The

essential difference between CPUs and GPUs comes from

how transistors are composed in the processor. CPUs use

large portions of the chip area for caches; while GPUs use

most of the area for Arithmetic Logic Units (ALUs) as shown

in Figure 1 [7][8].

Figure 1. The Different architecture CPU vs. GPU [7]

A demanding need to increase the computational performance

in science and engineering headed for heterogeneous

computing and highly parallel architectures thus created a

strong need for programmers to develop infrastructure in the

form of libraries routine to support computing is

heterogeneous hardware platforms [9]. Faster executions of

public key cryptography and precisely RSA are currently of

extreme importance. An RSA operation is a modular

exponentiation, which requires repeated modular

multiplications. Execution of fast modular multiplication for

large integers is the superior concern because it provides the

foundation for execution fast modular exponentiation, which

is the vital operation of the RSA cryptosystem [10]. Current

trends in computing society are to parallelize the sequential

algorithms to gain speed up [11]. However, such

parallelization is a challenging process. Motivated by such

challenge this paper proposes a hybrid system to parallelize

the RSA for multicore CPU and many cores GPUs. The

remaining of this paper is organized as follows. Section 2

highlights the state of the art of the related works in

parallelizing RSA algorithm. Section 3 reviews the RSA

algorithm by adopting Montgomery exponentiation. Section 4

highlights the implementation of RSA algorithm and its

parallelization. Section 5 shows the results and discusses

16

them. Finally, Section 6 gives the conclusion and suggestions

for future work.

2. RELATED WORK
Recently, many applications have been employed GPU as a

real platform to achieve efficient acceleration. To accelerate

the RSA encryption/decryption, several researches used a

GPU support.

Moss et al. presented the first GPU implementation of a public

key primitive; which performed an implementation of 1024

bits exponentiation on NVIDIA 7800 GTX GPU using vector

arithmetic in Residue Number Systems (RNS), which allowed

them to capitalize the fine-grained SIMD-parallel floating

point computation [12]. Their experimental results show that

there is a significant latency associated with invoking

operations on the GPU, due to overhead imposed by OpenGL

shading language, and transfer of data to and from the

accelerator. Therefore, the results were not promising, as they

were limited by the legacy GPU architecture and interface by

that time.

Szerwinski and Güneysu employed modular exponentiations

of 1024 and 2048 bits based on both Montgomery Coarsely

Integrated Operand Scanning (CIOS) and RNS arithmetic by

a NVIDIA 8800GTS GPU and the Compute Unified Device

Architecture (CUDA) framework to improve efficient

modular exponentiation [13]. Therefore, they were able to

compute 813 modular exponentiations per second for RSA

with 1024 bits, and 104.3 modular exponentiations per second

for RSA with 2048 bits.

Harrison and Waldron presented a high performance RSA

1024 bits modular exponentiation running on an NVIDIA

8800 GTX, which was established on integers represented in

standard radix system and RNS, where they obtained a peak

throughput of 0.18 ms/op that gives a 4 times improvement

over an equivalent CPU implementation [14].

Fleissner proposed a 192 bits Montgomery exponentiation

algorithm, indicated as "GPU-MonExp", which was executed

on NVIDIA 7800GTX GPU using OpenGL shading language

[15]. The performance tests had shown that its

implementation run 136-168 times faster than the standard

Montgomery exponentiation algorithm.

Neves and Araujo executed RSA-1024 decryption on GT200

GPUs [16]. They found that CIOS, the usual technique to

interleave Montgomery multiplication and reduction, is not

optimal on the GT200. Nevertheless, both Finely Integrated

Product Scanning (FIPS) and Finely Integrated Operand

Scanning (FIOS) found to be superior, and FIOS enabled

them to reach the best-recorded performances in the GT200

architecture to their date. Their throughput results, for over

20000 RSA-1024 decryptions per second or 41426 512 bits

modular exponentiations per second.

Li et al. had developed a fine-grained parallel approach for

Montgomery multiplications using CUDA 2.3 platform and

NVIDIA GeForce GTX285 GPU [17]. The experiment

showed that their implementation could get ten times of

acceleration compared to the implementation of comparable

algorithm on CPU.

As stated in the researches above, it is has been seen that the

key length used for encryption and decryption does not

exceed 2048 bits, as well as either of the research conducted a

fair comparison between the speed of implementation of the

RSA algorithm on the CPU and GPU. As such, this paper

gives a study on increasing the length of the key and makes a

fair comparison between implementation of the RSA

algorithm on the CPU and GPU.

3. RSA ALGORITHM
RSA algorithm, invented by Rivest, Shamir and Adelman in

1978 [18], is one of the famous algorithms for public-key

cryptography. It is appropriate for encryption and digital

signature. RSA is the utmost far used algorithm in Internet

security [19] [10]. In fact, Internet security depends

significantly on the security properties of the RSA

cryptosystem. Its security depends upon the insolvability of

the integer factorization problem and is believed to be

vulnerable given sufficiently long keys, such as 1024 bits or

more [20].

The RSA algorithm consists of three steps which include key

generation, encryption and decryption ones. It is comprised of

public and private keys. Messages encrypted with the public

key can only be decrypted using the private ones. The RSA

algorithm can be summarized in the following steps [18] [21]:

Step 1: Generate randomly two large prime's p and q of

approximately the same size, but not too close

together. Which are kept secret.

Step 2: Calculate the modulus n = p*q. and Calculate: φ

(n) = (p-1) (q-1); Where φ (n) represents the Euler
Totient function.

Step 3: Choose a random encryption exponent e less than
n such that the GCD (φ (n), e) =1, 1<e< φ (n).

Step 4: Calculate the decryption exponent d using The

Extended Euclidean algorithm: d. e = 1 mod φ (n).

Which d is the multiplicative inverse of e modulo φ
(n).

Step 5: The encryption function is: E (M) = M e mod n.

Step 6: The decryption function is: D (C) = Cd mod n.

Step 7: The RSA keys are: The public key is (n, e), and
the private key is (p, q, d).

3.1 Modular Arithmetic in RSA Algorithm
Operands' size is considered essential in mathematic

calculation. Therefore, two primes p and q should be chosen

to have just about the same bit length to guarantee that any

efforts to factor the modulus are computationally infeasible.

For security reasons, RSA operands' size needs to be 1024-

bits or greater in length which leads to high data throughput

rates that are difficult to accomplish [22].

Modular multiplication is used to implement modular

exponentiations, which in their turn, are used by several

public-key cryptosystems. The performance of public-key

cryptosystems is mainly determined by the implementation’s

efficiency of the modular exponentiation. Therefore, modular

multiplication is a vital factor in these systems [22].

3.2 Montgomery Algorithm
Montgomery algorithm presented by Peter Montgomery in

1985, which is the most rare algorithm used in public-key

cryptography; serve as an efficient algorithm for modular

multiplication and exponentiation operations [23].

Montgomery algorithm allows modular arithmetic to be

accomplished efficiently when the modulus is large (1024 bits

or more). The Montgomery algorithm consists of two

approaches: multiplication and reduction.

17

 Montgomery multiplication is a method for computing a. b

mod n for positive integers a, b, and n. It moderates execution

time on a computer when there are large numbers of

multiplications to be done with the same modulus n, and with

a small number of multipliers. In precise, it is useful to

compute a e mod n for a large value of n. The amount of

multiplications modulo n in such a computation can be

completed in a number considerably less than n by

successively squaring and multiplying according to the pattern

of the bits in the binary expression for n. Therefore, it

eliminates the mod n reduction steps and as a result, tends to

reduce the size of the timing characteristics.

In common, Montgomery multiplication algorithm computes

the Montgomery product as specified by [24].

MonMul (a', b') = a' .b' .r-1 (mod n)

Where the multipliers a and b are less than the modulus n. it is

needed to declare another integer r which must be greater than

n, as the gcd (r, n) = 1. The method, really, changes the

reduction modulo n to r. usually r is chosen to be an integral

power of 2. Therefore, the reduction modulo r is simply a

masking operation. If r is a reduction modulo power of 2, it

should have an odd n, to satisfy the GCD requirement [17].

The computation of MonMul (a, b) is given in Algorithm 1.

Algorithm 1: Montgomery Multiplication Algorithm [15]

[24].
Step 1: Input an odd modulus n and a radix

r = 2 ⌈log
2

n⌉, such that GCD (n, r) = 1, an auxiliary

value n'= -n -1 mod r, 2 n-residue integers

a' and b'.

Step 2: function: MonMul (a', b').

Step 3: Calculate t: = a' .b'.

Step 4: Calculate u: = (t + [t. n' mod r]. n) / r.

Step 5: If u ≥ n then return (u-n) else return u.

Step 6: Output a' .b' .r-1 (mod n).

As held from the MonMul () function above, a and

b is numbers that represent the n-residues, which can be

calculated as follows [24]:

a'= a .r mod n

b'= b .r mod n

The two integer's r-1 and n' are calculated, by using

the Extended Euclidean algorithm, such that:

 r r-1 – n n' =1

 The final result of the Montgomery multiplication

will be in the n-residue as follows [24]:

 u'= a' .b'.r-1 mod n

 Finally, a conversion step has to be performed to

transform the result back from the n-residue representation to

normal residue representation [24].

u= MonMul (u', 1)

The computation of the modular exponentiation x = a e mod N

using Montgomery multiplications is shown in Algorithm 2.

Algorithm 2: Montgomery Reduction Algorithm [15] [24].

Step 1: Input a, e, n.

Step 2: Function: MonExp (a, e, n).

Step 3: Calculate a'= a .r mod n.

Step 4: Calculate x'= 1 .r mod n.

Step 5: for i = n − 1 down to 0 loop

 x' = MonMul(x', x')

 If ei= 1; then

 x' = MonMul(x', a')

 End loop.

Step 6: x = MonMul(x', 1)

Step 7: return x.

Step 8: Output: a e mod n.

4. IMPLEMENTATION OF RSA

ALGORITHM
Cryptographic algorithm is recognized as compute-intensive

algorithms. Therefore, this section considers four variants

implementation, namely: Crypto++ library [25], sequential

Montgomery, multithreaded, and GPU based to facilitate the

performance comparison among them.

The RSA algorithm consist of three main stages: key, namely:

generation, encryption, and decryption. In order to represent

such large numbers as 1024 bits and higher the Biginteger

Class is used; so the keys are generated according to the step

mentioned in Section 3.

• Public key {e,n}

public struct RSA_Public_Key

{

 public BigInteger n;

 public BigInteger e;

 }

• Privte key

 public struct RSA_Secret_Key

 {

 public BigInteger n;

 public BigInteger d;

 public BigInteger p;

 public BigInteger q;

 }

The CPU carries out the key generation. As for the

encryption and decryption process it is handled with these

four cases:

1. A standard known library that efficiently runs RSA

algorithm; Crypto++ library was implemented that

uses a standard key size 1024 bits.

18

2. A sequential implementation of the RSA algorithm

runs on the CPU by implementing the Montgomery

algorithm.

3. An RSA parallel implementation executed on the

multicore CPU.

4. An RSA parallel implementation executed on the

many core GPU.

Unlike Crypto++ library, the proposed variant

implementations support variable key size as demand. The

main bottleneck of the RSA encryption process is the large

size of data; so after studying the RSA encryption process; In

order to provide a parallel implementation of the RSA, it is

desired to have no dependencies between the data. As so, the

data can be divided into small portions, each thread can

calculate a portion. As a result, this data parallelism method

increases the computing speed of RSA.

In the thread level, the plaintext or the cipher text is divided

into several portions with the same length, the same encrypt

or decrypt operation will be done for each portion, then the

encrypt and the decrypt process can be done with multiple

threads, each thread only need to gain the elements which are

assigned to it, and run the same encrypt or decrypt function

for these elements (in this case Montgomery algorithm). In

other words, each thread can independently undertake a

modular exponentiation.

The details of sequential implementation are given in

Algorithm 3. Algorithm 3 includes public class Montgomery

that implements the Montgomery algorithm mentioned in

Section 3.2. It should be mentioned that this class could be

reused as basic computing (thread) for multicore CPUs and as

a kernel for GPU, as depicted in Algorithm 4 and Algorithm 5

respectively.

In the threading structure for GPU, when a kernel is called it

will run on a grid. The number of block and threads on a grid

can be constructed. On modern GPUs, a thread block may

hold up to 1024 threads [26]. Threads can entrance diverse

memory locations. Every single thread has a private memory.

Every block has a shared memory, which is reachable for

every thread within the same block. All threads form different

blocks have access to the global memory. However, a kernel

could be implemented by multiple blocks of threads, so the

overall number of threads is equivalent to the number of

threads per block times the number of blocks. As depicted in

Figure 2.

Algorithm 3: Sequential RSA implementation on the CPU.

Step 1: Generate the keys as mentioned in section 3.

 Public key {e,n}

o public struct

RSA_Public_Key

 Private key {d,p,q}

o public struct

RSA_Secret_Key

Step 2: Insert the text that will be encrypted from a

file or typing it.

Step 3: Send the data to a for loop to do encryption

For (int i = 0; i < list_source.Count; i++)

 {

 var item = new {Id = i, Data = list

source[i]}

 };

Step 4: The encryption process is done using public

Encrypt (Big Integer biPlain, RSA_Public_Key

rpkKey)

Algorithm 4: Parallel RSA implementation on the

multicore CPU.

Step 1: Generate the keys as mentioned in section 3.

 Public key {e,n}

o public struct

RSA_Public_Key

 Private key {d,p,q}

o public struct

RSA_Secret_Key

Step 2: Insert the text that will be encrypted from a

file or typing it.

Step 3: Create a pool of threads

ThreadStartsList = new

List<ParameterizedThreadStart> ();

Step 4: Each thread will take a portion of data to

implement encryption on it.

For (int i = 0; i < list_source.Count; i++)

 {

ParameterizedThreadStart ts = delegate

(object o);

 {doEncrypt ((ThreadParameters)o); };

 threadStartsList.Add (ts);

 }

Step 5: The encryption process can be executed by

using:

 Public Encrypt (BigInteger biPlain,

RSA_Public_Key rpkKey)

Figure 2. Threading structure [27]

19

Algorithm 5: Parallel RSA implementation on the many

core GPU.

Step 1: Generate the keys as mentioned in section 3.

 Public key {e,n}

o public struct RSA_Public_Key

 Private key {d,p,q}

o public struct RSA_Secret_Key

Step 2: Insert the text that will be encrypted from a

file or typing it.

Step 3: Set kernel launch parameters (Set grid/

block size for GPU execution).

Launcher.SetGridSize (512);

Launcher.SetBlockSize (128);

Step 4: Call kernel method (GPU kernel)

Reduce_GPU (A, n, m, mPrime);

Step 5: Get the thread id and total number of thread.

 Int ThreadId = BlockDimension.X * Blo

ckIndex.X + ThreadIndex.X;

 Int TotalThreads = BlockDimension.X *

GridDimension.X;

It should be mentioned that the proposed variants

implementations are implemented using C# programming

language and GPU.net framework.

5. PERFORMANCE EVALUATION
In order to compare the speedup gain of parallelizing RSA in

multicore CPU and GPU computing environments against

Crypto++ library and Sequential Montgomery, a series of

experimental groups are conducted.

The speed up factor is a measure that captures the

comparative benefit of solving a computational problem in

parallel. The speed up factor of parallel computation

operating on p processors is derived as the following ratio

[28]:

 Sp =

 …………….. (eq. 1)

Where Ts is the execution time taken to perform the

computation on one processor and Tp is the execution time

needed to perform the same computation using p processors.

Another two important aspects must be considered latency

and throughput. Latency is the time taken to process an

individual data item through the processing, while throughput

is the total number of processed data that occur in a given

amount of time [29]. The test groups are defined as follows:

 Group 1: the message size is fixed to 760 bits,

which is encrypted and decrypted with varied key size

from 768 to 8192 bits.

Group 2: input messages varied in size that is

convenient with the size of the encryption key (one byte less

than modulus size).

Group 3: Varying the block size to be multiple of

message size in steps of 50 to 600. Here, we are more

interested to determine the speed up gain as far as the

throughput is concerned.

The experiment was carried out on a laptop with the

following specification:

 CPU: Intel Core I7-2670QM at 2.20GHz clock

frequency.

 Memory: 12.0 GB.

 GPU: NVIDIA GeForce GT630M consists of 96

cores.

 System: Windows 7 Home Premium.

The results of applying group1 are tabulated in Table 1

and 2; as the results of applying group2 are tabulated in Table

3 and 4. According to Table 1, it is clear that no significant

difference in execution time between the Crypto++ library and

our sequential implementation. To ensure fair speed up for the

parallel implementation, we consider the sequential time of

our sequential version. As for the execution time shown in

Table 1 and Table 3, it is seen that the GPU implementation

begin to be faster than the other two implementation when the

key size is 3072 bits and higher.

Table 1. The execution time (latency) in Milliseconds

for encryption of 760 bits message length with variant key

size

Key Size

in bits

 Crypto++ Sequential

CPU

Multi -

thread

CPU

Many

core

GPU

768 --- 0.110 0.87 1.08
1024 0.500 0.130 0.94 0.92
2048 --- 0.49 1.28 0.91
3072 --- 0.85 1.4 0.8
4096 --- 1.54 1.9 0.99
6144 --- 4.01 3.13 1.95
8192 --- 5.93 3.9 1.980

Table 2. The execution time (latency) in Milliseconds for

decryption of 760 bits message length with variant key size

Key Size

in bits

Crypto++ Sequential

CPU

Multi-

thread

CPU

Many

core

GPU

768 --- 5.03 5.46 2.42

1024 7.000 8.89 7.89 2.78

2048 --- 76.294 38.662 9.27

3072 --- 250.034 73.984 23.621

4096 --- 411.453 140.378 41.592

6144 --- 1727.579 369.301 93.315

8192 --- 2664.313 724.961 201.071

From Table 2 and Table 4 it can be seen that the time taken to

decrypt a message is more than that needed to encrypt one;

that is due the public exponent e is taken small than the

private exponent.as for the execution time the GPU exceed the

other two for all key size; also it can be inferred that the GPU

is more powerful with heavy computations.

Table 3. The execution time in (Milliseconds) for

encryption of variant key size

Key Size in

bits

Sequential

CPU

Multithread

CPU

Many core

GPU

768 0.56 0.87 1.08

1024 0.75 0.9 1.13

2048 1.04 2.82 1.9

3072 2.99 4.38 2.6

4096 6.8 6.22 4.64

6144 24.801 12.74 8.63

8192 45.822 20.321 11.76

20

In order to judge the performance of the parallel

implementation, the speed up factor is calculated for Table 1,

2, 3, and 4 as explained in equation 1; where S1 is the speed

up factor for the multithread CPU implementation and S2 is

the speed up factor for the many core GPU implementation.

Table 4. The execution time in (Milliseconds) for

decryption of variant key size

Key Size in

bits

Sequential

CPU

Multithread

CPU

Many

core

GPU

768 5.03 5.46 2.42

1024 11.46 9.88 2.84

2048 158.339 63.003 17.29

3072 604.494 192.931 50.122

4096 1923.45 607.834 111.546

6144 9671.104 2062.689 461.236

8192 28628.04 4736.691 1244.781

According to Table 5 and 6, the speed up factor is not very

high for the encryption process; however, for the decryption

process it can be seen that the multithread only gains ~6X

speed up; when the many core GPU gains ~23X; so the speed

up is much higher with the many core GPU implementation.

Table 5. The speed up factor calculated for Table 1 and

Table 2

Decryption Encryption Key Size in

bits S2 S1 S2 S1

2.078 0.921 0.101 0.126 768

3.917 1.224 0.141 0.138 1024

8.230 1.973 0.538 0.382 2048

10.585 3.379 1.062 0.607 3072

12.035 3.566 1.555 0.810 4096

18.513 4.677 2.056 1.281 6144

18.627 5.166 2.994 1.520 8192

Table 6. The speed up factor calculated for Table 3 and

Table 4

Decryption Encryption Key Size in

bits S2 S1 S2 S1

2.078 0.921 0.518 0.643 768

4.035 1.159 0.132 0.166 1024

9.157 2.512 0.547 0.368 2048

12.06 3.133 1.150 0.682 3072

17.243 3.164 1.465 1.093 4096

20.967 4.688 2.873 1.946 6144

22.998 6.043 3.896 2.254 8192

The results of applying group3 are tabulated in Table 7 and 8;

from Table 3 to encrypt one message with 1024 bits key it

takes 0.75 ms for sequential version which means to encrypt

600 messages it would take 450 ms but as we see in Table 7 it

takes 1262.272 ms which means more time due to looping

overhead; now let see the speed up gain for multithread

version. From Table 3 to encrypt one message with 1024 bits

key it takes 0.9 ms for multithread that means to encrypt 600

messages it would take 540 ms but as we see in Table 7 it

takes 439.475 ms which means it is 1.228 times faster than the

expected one due to free resources available for computing

that could be occupied by available threads. Finally, the same

observation could be noted for the GPU environment. From

Table 3 to encrypt one message with 1024 bits key it takes

1.13 ms for many core GPU that means to encrypt 600

messages it would take 678 ms but as we see in Table 7 it

takes 431.194 ms, which means it is 1.572 times faster.

Table 7. The execution time in (Milliseconds) for

encryption of No of messages with 1024 bits key

No. of

Message

Crypto++ Sequential

CPU

Multi

thread

CPU

Many

core

GPU

50 72.04 78.004 29.341 33.321

100 165.1 155.408 59.383 61.603

150 181.06 179.71 105.106 96.675

200 352.04 348.92 131.147 131.177

250 400.213 389.014 153.64 147.64

300 425.69 417.001 160.76 148.63

350 444.11 438 187.09 179.41

400 551.24 544.543 281.446 275.215

600 1301.45 1262.272 439.475 431.194

While for the results from Table 8 of the decryption process;

it can be seen that the GPU implementation is approximately

14 time faster, while the multithread CPU is 2.17 faster; this

approve the ability of the GPU to deal with large data .

Table 8. The execution time in (Milliseconds) for

decryption of No of messages with 1024 bits key

No. of

Message

Crypto++ Sequential

CPU

Multi

Thread

CPU

Many

core

GPU

50 623.5 540.63 216.522 47.042

100 1217.051 1136.935 476.607 78.534

150 2360.61 1796.353 580.793 99.445

200 2626.078 2243.748 939.853 145.188

250 2715.921 2390.824 1020.292 157.43

300 3050.214 2986.116 792.691 158.76

350 3560.041 3367.687 1124.443 215.53

400 4740.12 4697.208 1851.426 273.635

600 6021 5958.671 2734.996 413.883

The throughput (message processed per second) for

decryption process with key sizes 1024 and 2048 bits are

shown in Figures 3, and 4 respectively. The throughput gained

by the GPU exceeds the multithread and sequential

implementations; the throughput gained for 1024 bits is ~1800

msg/sec; as for 2048 bits is ~250 msg/sec.

6. CONCLUSIONS
This paper proposed three variants implementations of

executing modular exponentiation using the Montgomery

algorithm, which is the essential computational operation in

21

0
25
50
75

100
125
150
175
200
225
250
275

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 6 0 0 M
es

sa
ge

s
P

ro
ce

ss
ed

 P
er

 S
ec

o
n

d

Number of Messages

Sequential CPU Multithread CPU

Many core GPU

cryptosystems like RSA; the experiments are conducted on a

laptop with Intel Core I7-2670QM, 2.20 GHz CPU and

Nvidia GeForce GT630M GPU. The GPU implementation

gained approximately 23 speed up factor over the sequential

CPU implementation; while the multithread CPU

implementation gained only 6 speed up factor over the

sequential CPU implementation as far as the latency is

concerned. Furthermore, additional speedup could be gained

as far as the throughput is concerned; the throughput gained

for 1024 bits is ~1800 msg/sec; as for 2048 bits is ~250

msg/sec. Due to overlapping of multithread operation

whenever free resources are available. Results reveal that the

GPU is appropriate to speed up the RSA algorithm. In the

future work, we will focus on implementing another

cryptographic algorithm like elliptic curve.

Figure 3. 1024 bits decryption throughput

Figure 4. 2048 bits decryption throughput

7. ACKNOWLEDGMENTS
The authors desire to express their gratitude and thanks to the

computer center at University of Baghdad for their support to

this work, and offer thanks and appreciation for everyone who

assists us to do this work.

8. REFERENCES
[1] Damrudi, M. and Ithnin, N. "State of the Art Practical

Parallel Cryptographic Approaches", Australian Journal

of Basic and Applied Sciences, Vol. 5, No.7, pp. 660-

677, 2011.

[2] Rasool, S.; Qyser, A.; Rizwanullah, M. and Ghori, M.

"Secure Data Transmission over Networks", Asian

Journal of Computer Science and Information

Technology, Vol. 2, No. 8, pp. 257– 261, 2012.

[3] Huang, Z. and Li, S "Design and Implementation of a

Low Power RSA Process for Smartcard", International

Journal of Modern Education and Computer Science,

Vol. 3, No.3, pp. 8-14, 2011.

[4] Sepahvandi, S.; Hosseinzadeh, M.; Navi, K. and Jalali,

A. "An Improved Exponentiation Algorithm for RSA

Cryptosystem", International Conference on Research

Challenges in Computer Science, ICRCCS '09, pp.128-

132, 2009.

[5] Lara, P.; Borges, F.; Portugal, R. and Nedjah, N.

"Parallel modular exponentiation using load balancing

without pre computation", Journal of Computer and

System Sciences, Vol.78, No.2, pp. 575–582, 2012.

[6] Owens, J.; Houston, M.; Luebke, D.; Green, S.; Stone, J.

and Phillips, J. "GPU Computing", Proceedings of the

IEEE, Journals & Magazines, Vol. 96, No.5, pp. 879-

899, 2008.

[7] Gupta,S. and Babu, M. "Performance Analysis of GPU

compared to Single core and Multi-core CPU for Natural

Language Applications", International Journal of

Advanced Computer Science and Applications

(IJACSA), Vol. 2, No. 5, pp.50-53, 2011.

[8] Su, C.; Lan, C.; Huang, L. and Wu, K. "Overview and

Comparison of OpenCL and CUDA Technology for

GPGPU", IEEE Asia Pacific Conference on Circuits and

Systems (APCCAS), pp. 448 – 451, 2012.

[9] Thouti, K. and Sathe, S." Comparison of Open MP and

Open CL Parallel Processing Technologies",

International Journal of Advanced Computer Science and

Applications (IJACSA), Vol. 3, No.4, pp. 56-61, 2012.

[10] Rao, R.; Lakshmi, P.; Shankar, N. "A Novel Modular

Multiplication Algorithm and its Application to RSA

Decryption", International Journal of Computer Science

Issues (IJCSI), Vol. 9, Issue 6, No 3, pp. 303-309,

November, 2012.

[11] Hwu, W.; Keutzer, K. and Mattson, T.G. "The

Concurrency Challenge", IEEE Design & Test of

Computers, Vol. 25, No.4, pp. 312-320, 2008.

[12] Moss, A.; Page, D. and Smart, N. "Toward Acceleration

of RSA Using 3D Graphics Hardware", Proceedings of

the 11th IMA International Conference on Cryptography

and Coding, pp. 364-383, 2007.

[13] Szerwinski, R. and Güneysu, T. "Exploiting the Power of

GPUs for Asymmetric Cryptography", 10th International

Workshop on Cryptographic Hardware and Embedded

Systems – CHES 08 , Washington, D.C., USA, Volume

5154, pp. 79-99, 2008.

[14] Harrison, O. and Waldron, J. "Efficient Acceleration of

Asymmetric Cryptography on Graphics Hardware", The

2nd International Conference on Cryptology in Africa,

Progress in Cryptology (AFRICACRYPT 09), Lecture

Notes in Computer Science ,Volume 5580, PP. 350-367,

2009.

[15] Fleissner, S. "GPU-Accelerated Montgomery

Exponentiation", 7th International Conference

0
200
400
600
800

1000
1200
1400
1600
1800
2000

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 6 0 0

M
es

sa
ge

s
P

ro
ce

ss
ed

 P
er

 S
ec

o
n

d

Number of Messages

Sequential CPU Multithread CPU

Many core GPU

22

Computational Science – ICCS 07, Beijing,

China, Lecture Notes in Computer Science, Vol.

4487,Springer ,pp. 213-220, 2007.

[16] Neves, S. and Araujo, F. "On the Performance of GPU

Public-Key Cryptography", IEEE International

Conference on Application-Specific Systems,

Architectures and Processors (ASAP), pp. 133-140,

2011.

[17] Li, T.; Li, H. and Xiang, J. "A GPU-based Fine-grained

Parallel Montgomery Multiplication Algorithm" , Recent

Advances in Computer Science and Information

Engineering, Vol. 126, pp. 135-143 , 2012.

[18] Rivest, R.; Shamir, A. and Adleman, L. "A Method for

Obtaining Digital Signatures and Public-Key

Cryptosystems", Published in Magazine

Communications of the ACM, New York, NY, USA.

Volume 21, Issue 2, pp. 120-126, February 1978.

[19] Alijani, G.; Christy, J.; Craft, H.; Mok, P. and Welsh, J.

"Design and Implementation of an Information Security

Model for E-Business", Information Systems Education

Journal, Vol. 4, No. 4, pp. 1-13, 2006.

[20] Zhao, L.; Iyer, R.; Makineni, S. and Bhuyan, L.

"Anatomy and Performance of SSL Processing ", IEEE

International Symposium on Performance Analysis of

Systems and Software, ISPASS 05, pp.197-206, 2005.

[21] Ramachandra Rao, G. A. V.; Lakshmi, P. V.; Ravi

Shankar, N." RSA Public Key Cryptosystem using

Modular Multiplication " International Journal of

Computer Applications, Vol. 80, No5, pp.38-42, October

2013.

[22] Selçuk, B. and Erkay, S. "Highly-Parallel Montgomery

Multiplication for Multi-core General-Purpose

Microprocessors", Computer and Information Sciences

III, 27th International Symposium on Computer and

Information Sciences, pp. 467-476, 2013.

[23] Montgomery, P. "Modular Multiplication without Trial

Division", Mathematics of Computation, Vol. 44,

No.170, pp. 519-521, 1985.

[24] Koc, C.; Acar, T. and Kaliski, B. "Analyzing and

Comparing Montgomery Multiplication Algorithms",

IEEE Micro, Vol. 16, No.3, pp. 26-33, 1996.

[25] Crypto++ web site, available at:

http://www.cryptopp.com, last accessed on 6 January

2014.

[26] CUDA C PROGRAMMING GUIDE, 2013, NVIDIA.

[27] Hwu, W.; Rodrigues, C.; Ryoo, S. and Stratton, J."

Compute Unified Device Architecture Application

Suitability", IEEE Computing in Science & Engineering,

Vol.11, No. 3, pp. 16 - 26 2009.

[28] Roosta, S. " Parallel Processing and Parallel Algorithms:

Theory and Computation ", ISBN: 0-387-98716-9,

Springer Verlag, 2000.

[29] Kermarrec, A.; Bougé, L.and Priol, T. "Euro-Par 2007

Parallel Processing ", 13th International Euro-Par

Conference: Lecture Notes in Computer Science, ISBN

978-3-540-74465-8, Vol. 4641, 2007.

IJCATM : www.ijcaonline.org

