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ABSTRACT 

Public key algorithms are extensively known to be slower 

than symmetric key alternatives in the a r e a  of 

cryptographic  algorithms for the reason of their basis in 

modular arithmetic. The most public key algorithm widely 

used is the RSA. Therefore, how to enhance the speed of 

RSA algorithm has been the research significant topic in the 

computer security as well as in computing fields.  With 

remarkable increase in the computing capability of the 

modern Graphics Processing Unit's (GPUs) as a co-processor 

of the CPU, one can significantly benefit from the Single 

Instruction Multiple Thread (SIMT) style of computing. This 

paper proposes a hybrid system to parallelize the RSA for 

multicore CPU and many cores GPUs with variable key size. 

In doing so, three variants implementation for the RSA 

algorithm are done to facilitate the performance comparison 

against Crypto++ library and sequential counterpart. The GPU 

implementation gained approximately 23 speed up factor over 

the sequential CPU implementation; while the multithread 

CPU implementation gained only 6 speed up factor over the 

sequential CPU implementation as far as the latency is 

concerned. Furthermore, additional speedup could be gained 

as far as the throughput is concerned; the throughput gained 

for 1024 bits is ~1800 msg/sec; as for 2048 bits is ~250 

msg/sec. Due to overlapping of multithread operation 

whenever free resources are available. The experiments are 

conducted on a laptop with Intel Core I7-2670QM, 2.20 GHz 

CPU and Nvidia GeForce GT630M GPU. Results reveal that 

the GPU is appropriate to speed up the RSA algorithm. 

General Terms 

Parallel Processing, Parallel Computing, RSA Algorithm, 

SIMT, Multithreading and Concurrent Computing, 

Heterogeneous computing. 

Keywords 

RSA; SIMT; GPU; Parallel algorithms; Heterogeneous 

computing. 

1. INTRODUCTION 
Over the past two decades, with the rapid evolution in the area 

of information technology and the internet have created 

imaginative applications and technologies along the way. 

Recently, we can send a multimedia message, or get one from 

almost anyone around the world in a few seconds through the 

internet. To guard data transmitted from snooping by someone 

other than the receiver. It is desired to hide the message before 

it is sent to a non-secure communication channel. This is 

achieved through encryption [1] [2]. Due to its distinctive 

ability to distribute and manage keys, public key encryption 

has become the perfect solution to information security [3]. 

Public key algorithms (e.g., RSA algorithm) rely essentially 

on hard mathematical problems (modular multiplication and 

modular exponentiation) of very large integers, ranging from 

128 to 2048 bits. With such large numbers, the achievement 

of the calculation process will not be quick or easy to 

implement [4]. With the rapid developments in hardware and 

software technologies, it seems that sequential 

implementation of encryption algorithms are not safer and fast 

enough. Parallel algorithms on the other hand play a 

significant role in maintaining rapid growth. Not only, multi-

core processors, but also a powerful graphics cards are 

becoming more and more available [5]. Graphics Processing 

Units (GPUs) have been increasingly used as a powerful 

accelerator in several high computational demanding 

applications due to their flexibility and moderate cost [6]. The 

essential difference between CPUs and GPUs comes from 

how transistors are composed in the processor. CPUs use 

large portions of the chip area for caches; while GPUs use 

most of the area for Arithmetic Logic Units (ALUs) as shown 

in Figure 1 [7][8].  

 

 

 

 

 

Figure 1. The Different architecture CPU vs. GPU [7] 

A demanding need to increase the computational performance 

in science and engineering headed for heterogeneous 

computing and highly parallel architectures thus created a 

strong need for programmers to develop infrastructure in the 

form of libraries routine to support computing is 

heterogeneous hardware platforms [9]. Faster executions of 

public key cryptography and precisely RSA are currently of 

extreme importance. An RSA operation is a modular 

exponentiation, which requires repeated modular 

multiplications. Execution of fast modular multiplication for 

large integers is the superior concern because it provides the 

foundation for execution fast modular exponentiation, which 

is the vital operation of the RSA cryptosystem [10]. Current 

trends in computing society are to parallelize the sequential 

algorithms to gain speed up [11]. However, such 

parallelization is a challenging process. Motivated by such 

challenge this paper proposes a hybrid system to parallelize 

the RSA for multicore CPU and many cores GPUs. The 

remaining of this paper is organized as follows. Section 2 

highlights the state of the art of the related works in 

parallelizing RSA algorithm. Section 3 reviews the RSA 

algorithm by adopting Montgomery exponentiation. Section 4   

highlights the implementation of RSA algorithm and its 

parallelization. Section 5 shows the results and discusses 
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them. Finally, Section 6 gives the conclusion and suggestions 

for future work. 

2. RELATED WORK 
Recently, many applications have been employed GPU as a 

real platform to achieve efficient acceleration. To accelerate 

the RSA encryption/decryption, several researches used a 

GPU support. 

Moss et al. presented the first GPU implementation of a public 

key primitive; which performed an implementation of 1024 

bits exponentiation on NVIDIA 7800 GTX GPU using vector 

arithmetic in Residue Number Systems (RNS), which allowed 

them to capitalize the fine-grained SIMD-parallel floating 

point computation [12]. Their experimental results show that 

there is a significant latency associated with invoking 

operations on the GPU, due to overhead imposed by OpenGL 

shading language, and transfer of data to and from the 

accelerator. Therefore, the results were not promising, as they 

were limited by the legacy GPU architecture and interface by 

that time. 

Szerwinski and Güneysu employed modular exponentiations 

of 1024 and 2048 bits based on both Montgomery Coarsely 

Integrated Operand Scanning (CIOS) and RNS arithmetic by 

a NVIDIA 8800GTS GPU and the Compute Unified Device 

Architecture (CUDA) framework to improve efficient 

modular exponentiation [13]. Therefore, they were able to 

compute 813 modular exponentiations per second for RSA 

with 1024 bits, and 104.3 modular exponentiations per second 

for RSA with 2048 bits. 

Harrison and Waldron  presented a high performance RSA 

1024 bits modular exponentiation running on an NVIDIA 

8800 GTX, which was established on integers represented in 

standard radix system and  RNS, where they obtained a peak 

throughput of 0.18 ms/op that gives a 4 times improvement 

over an equivalent CPU implementation [14]. 

Fleissner proposed a 192 bits Montgomery exponentiation 

algorithm, indicated as "GPU-MonExp", which was executed 

on NVIDIA 7800GTX GPU using OpenGL shading language 

[15]. The performance tests had shown that its 

implementation run 136-168 times faster than the standard 

Montgomery exponentiation algorithm. 

Neves and Araujo executed RSA-1024 decryption on GT200 

GPUs [16]. They found that CIOS, the usual technique to 

interleave Montgomery multiplication and reduction, is not 

optimal on the GT200. Nevertheless, both Finely Integrated 

Product Scanning (FIPS) and Finely Integrated Operand 

Scanning (FIOS) found to be superior, and FIOS enabled 

them to reach the best-recorded performances in the GT200 

architecture to their date. Their throughput results, for over 

20000 RSA-1024 decryptions per second or 41426 512 bits 

modular exponentiations per second. 

Li et al. had developed a fine-grained parallel approach for 

Montgomery multiplications using CUDA 2.3 platform and 

NVIDIA GeForce GTX285 GPU [17]. The experiment 

showed that their implementation could get ten times of 

acceleration compared to the implementation of comparable 

algorithm on CPU. 

As stated in the researches above, it is has been seen that the 

key length used for encryption and decryption does not 

exceed 2048 bits, as well as either of the research conducted a 

fair comparison between the speed of implementation of the 

RSA algorithm on the CPU and GPU. As such, this paper 

gives a study on increasing the length of the key and makes a 

fair comparison between implementation of the RSA 

algorithm on the CPU and GPU. 

3. RSA ALGORITHM 
RSA algorithm, invented by Rivest, Shamir and Adelman in 

1978 [18], is one of the famous algorithms for public-key 

cryptography. It is appropriate for encryption and digital 

signature. RSA is the utmost far used algorithm in Internet 

security [19] [10]. In fact, Internet security depends 

significantly on the security properties of the RSA 

cryptosystem. Its security depends upon the insolvability of 

the integer factorization problem and is believed to be 

vulnerable given sufficiently long keys, such as 1024 bits or 

more [20].  

The RSA algorithm consists of three steps which include key 

generation, encryption and decryption ones. It is comprised of 

public and private keys. Messages encrypted with the public 

key can only be decrypted using the private ones. The RSA 

algorithm can be summarized in the following steps [18] [21]: 

Step 1: Generate randomly two large prime's p and q of 

approximately the same size, but not too close 

together. Which are kept secret. 

Step 2: Calculate the modulus n = p*q. and Calculate: φ 

(n) = (p-1) (q-1); Where φ (n) represents the Euler 
Totient function. 

Step 3: Choose a random encryption exponent e less than 
n such that the GCD (φ (n), e) =1, 1<e< φ (n).  

Step 4: Calculate the decryption exponent d using The 

Extended Euclidean algorithm:  d. e = 1 mod φ (n). 

Which d is the multiplicative inverse of e modulo φ 
(n).  

Step 5: The encryption function is: E (M) = M e  mod n. 

Step 6: The decryption function is:  D (C) = Cd mod n. 

Step 7: The RSA keys are: The public key is (n, e), and 
the private key is (p, q, d). 

3.1 Modular Arithmetic in RSA Algorithm 
Operands' size is considered essential in mathematic 

calculation. Therefore, two primes p and q should be chosen 

to have just about the same bit length to guarantee that any 

efforts to factor the modulus are computationally infeasible. 

For security reasons, RSA operands' size needs to be 1024-

bits or greater in length which leads to high data throughput 

rates that are difficult to accomplish [22]. 

Modular multiplication is used to implement modular 

exponentiations, which in their turn, are used by several 

public-key cryptosystems. The performance of public-key 

cryptosystems is mainly determined by the implementation’s 

efficiency of the modular exponentiation. Therefore, modular 

multiplication is a vital factor in these systems [22]. 

3.2 Montgomery Algorithm 
Montgomery algorithm presented by Peter Montgomery in 

1985, which is the most rare algorithm used in public-key 

cryptography; serve as an efficient algorithm for modular 

multiplication and exponentiation operations [23]. 

Montgomery algorithm allows modular arithmetic to be 

accomplished efficiently when the modulus is large (1024 bits 

or more). The Montgomery algorithm consists of two 

approaches: multiplication and reduction. 
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 Montgomery multiplication is a method for computing a. b 

mod n for positive integers a, b, and n. It moderates execution 

time on a computer when there are large numbers of 

multiplications to be done with the same modulus n, and with 

a small number of multipliers. In precise, it is useful to 

compute a e mod n for a large value of n. The amount of 

multiplications modulo n in such a computation can be 

completed in a number considerably less than n by 

successively squaring and multiplying according to the pattern 

of the bits in the binary expression for n. Therefore, it 

eliminates the mod n reduction steps and as a result, tends to 

reduce the size of the timing characteristics.  

In common, Montgomery multiplication algorithm computes 

the Montgomery product as specified by [24]. 

 

MonMul (a', b') = a' .b' .r-1 (mod n) 

Where the multipliers a and b are less than the modulus n. it is 

needed to declare another integer r which must be greater than 

n, as the gcd (r, n) = 1. The method, really, changes the 

reduction modulo n to r. usually r is chosen to be an integral 

power of 2. Therefore, the reduction modulo r is simply a 

masking operation. If r is a reduction modulo power of 2, it 

should have an odd n, to satisfy the GCD requirement [17]. 

The computation of MonMul (a, b) is given in Algorithm 1. 

Algorithm 1: Montgomery Multiplication Algorithm [15] 

[24]. 
Step 1: Input an odd modulus n and a radix  

r = 2 ⌈log
2 

n⌉, such that GCD (n, r) = 1, an auxiliary 

value n'= -n -1 mod r, 2 n-residue integers 

a' and b'.  

Step 2: function: MonMul (a', b'). 

Step 3: Calculate t: = a' .b'.  

Step 4: Calculate u: = (t + [t. n' mod r]. n) / r. 

Step 5: If u ≥ n then return (u-n) else return u. 

Step 6: Output a' .b' .r-1 (mod n). 

As held from the MonMul ( ) function above, a and 

b is numbers that represent the n-residues, which can be 

calculated as follows [24]: 

 

a'= a .r mod n  

b'= b .r mod n 

 

The two integer's r-1 and n' are calculated, by using 

the Extended Euclidean algorithm, such that: 

 

 r r-1 – n n' =1 

 

 The final result of the Montgomery multiplication 

will be in the n-residue as follows [24]: 

 

               u'= a' .b'.r-1 mod n 

 

 Finally, a conversion step has to be performed to 

transform the result back from the n-residue representation to 

normal residue representation [24]. 

 

u= MonMul (u', 1) 

 

The computation of the modular exponentiation x = a e mod N 

using Montgomery multiplications is shown in Algorithm 2. 

 

Algorithm 2: Montgomery Reduction Algorithm [15] [24]. 

Step 1: Input a, e, n. 

Step 2: Function: MonExp (a, e, n). 

Step 3:  Calculate a'= a .r mod n. 

Step 4: Calculate x'= 1 .r mod n. 

Step 5: for i = n − 1 down to 0 loop 

 x' = MonMul(x', x') 

          If ei= 1; then  

                                      x' = MonMul(x', a') 

           End loop. 

Step 6: x = MonMul(x', 1) 

Step 7: return x. 

Step 8: Output: a e mod n. 

4. IMPLEMENTATION OF RSA   

ALGORITHM 
Cryptographic algorithm is recognized as compute-intensive 

algorithms.  Therefore, this section considers four variants 

implementation, namely: Crypto++ library [25], sequential 

Montgomery, multithreaded, and GPU based to facilitate the 

performance comparison among them. 

 

The RSA algorithm consist of three main stages: key, namely: 

generation, encryption, and decryption. In order to represent 

such large numbers as 1024 bits and higher the Biginteger 

Class is used; so the keys are generated according to the step 

mentioned in Section 3. 

 

• Public key {e,n} 

public struct RSA_Public_Key 

{           

   public BigInteger n;  

   public BigInteger e;   

 } 

 

• Privte key 

        public struct RSA_Secret_Key 

        {           

           public BigInteger n;    

           public BigInteger d;     

           public BigInteger p;    

           public BigInteger q;     

         } 

 

The CPU carries out the key generation. As for the 

encryption and decryption process it is handled with these 

four cases: 

 

1. A standard known library that efficiently runs RSA 

algorithm; Crypto++ library was implemented that 

uses a standard key size 1024 bits. 
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2. A sequential implementation of the RSA algorithm 

runs on the CPU by implementing the Montgomery 

algorithm. 

3. An RSA parallel implementation executed on the 

multicore CPU. 

4. An RSA parallel implementation executed on the 

many core GPU. 

  

Unlike Crypto++ library, the proposed variant 

implementations support variable key size as demand. The 

main bottleneck of the RSA encryption process is the large 

size of data; so after studying the RSA encryption process; In 

order to provide a parallel implementation of the RSA, it is 

desired to have no dependencies between the data.  As so, the 

data can be divided into small portions, each thread can 

calculate a portion. As a result, this data parallelism method 

increases the computing speed of RSA.  

 

In the thread level, the plaintext or the cipher text is divided 

into several portions with the same length, the same encrypt 

or decrypt operation will be done for each portion, then the 

encrypt and the decrypt process can be done with multiple 

threads, each thread only need to gain the elements which are 

assigned to it, and run the same encrypt or decrypt function 

for these elements (in this case Montgomery algorithm). In 

other words, each thread can independently undertake a 

modular exponentiation.  

 

The details of sequential implementation are given in 

Algorithm 3.  Algorithm 3 includes public class Montgomery 

that implements the Montgomery algorithm mentioned in 

Section 3.2. It should be mentioned that this class could be 

reused as basic computing (thread) for multicore CPUs and as 

a kernel for GPU, as depicted in Algorithm 4 and Algorithm 5 

respectively.  

 

In the threading structure for GPU, when a kernel is called it 

will run on a grid. The number of block and threads on a grid 

can be constructed. On modern GPUs, a thread block may 

hold up to 1024 threads [26]. Threads can entrance diverse 

memory locations. Every single thread has a private memory. 

Every block has a shared memory, which is reachable for 

every thread within the same block. All threads form different 

blocks have access to the global memory. However, a kernel 

could be implemented by multiple blocks of threads, so the 

overall number of threads is equivalent to the number of 

threads per block times the number of blocks. As depicted in 

Figure 2. 

 

Algorithm 3: Sequential RSA implementation on the CPU. 

Step 1: Generate the keys as mentioned in section 3. 

 Public key {e,n} 

o public struct 

RSA_Public_Key 

 

 Private key {d,p,q} 

o public struct 

RSA_Secret_Key 

 

Step 2: Insert the text that will be encrypted from a 

file or typing it. 

 

Step 3: Send the data to a for loop to do encryption 

For (int i = 0; i < list_source.Count; i++) 

    { 

      var item = new {Id = i, Data = list 

source[i]} 

 }; 

Step 4: The encryption process is done using public   

Encrypt (Big Integer biPlain, RSA_Public_Key 

rpkKey)  

Algorithm 4: Parallel RSA implementation on the 

multicore CPU. 

Step 1: Generate the keys as mentioned in section 3. 

 Public key {e,n} 

o public struct 

RSA_Public_Key 

 

 Private key {d,p,q} 

o public struct 

RSA_Secret_Key 

 

Step 2: Insert the text that will be encrypted from a 

file or typing it. 

Step 3: Create a pool of threads 

 

ThreadStartsList = new 

List<ParameterizedThreadStart> (); 

 

Step 4: Each thread will take a portion of data to 

implement encryption on it. 

 

For (int i = 0; i < list_source.Count; i++) 

                { 

ParameterizedThreadStart ts = delegate   

(object o);  

                                    {doEncrypt ((ThreadParameters)o); }; 

                    threadStartsList.Add (ts); 

                } 

Step 5: The encryption process can be executed by 

using: 

 Public Encrypt (BigInteger biPlain, 

RSA_Public_Key rpkKey) 

 

Figure 2. Threading structure [27] 
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Algorithm 5: Parallel RSA implementation on the many 

core GPU. 

Step 1: Generate the keys as mentioned in section 3. 

 Public key {e,n} 

o public struct RSA_Public_Key 

 Private key {d,p,q} 

o public struct RSA_Secret_Key 

Step 2: Insert the text that will be encrypted from a 

file or typing it. 

Step 3: Set kernel launch parameters (Set grid/ 

block size for GPU execution). 

Launcher.SetGridSize (512);  

Launcher.SetBlockSize (128);  

Step 4: Call kernel method (GPU kernel) 

Reduce_GPU (A, n, m, mPrime); 

Step 5: Get the thread id and total number of thread. 

  Int ThreadId = BlockDimension.X * Blo

ckIndex.X + ThreadIndex.X;  

  Int TotalThreads = BlockDimension.X * 

GridDimension.X;  

 

It should be mentioned that the proposed variants 

implementations are implemented using C# programming 

language and GPU.net framework. 

 

5. PERFORMANCE EVALUATION 
In order to compare the speedup gain of parallelizing RSA  in 

multicore CPU and GPU computing environments against 

Crypto++ library and Sequential Montgomery, a series of 

experimental groups are conducted. 
 

The speed up factor is a measure that captures the 

comparative benefit of solving a computational problem in 

parallel.  The speed up factor of parallel computation 

operating on p processors is derived as the following ratio 

[28]: 

 

                                   Sp = 
  

  
    …………….. (eq. 1) 

Where Ts is the execution time taken to perform the 

computation on one processor and Tp is the execution time 

needed to perform the same computation using p processors. 

Another two important aspects must be considered latency 

and throughput. Latency is the time taken to process an 

individual data item through the processing, while throughput 

is the total number of processed data that occur in a given 

amount of time [29]. The test groups are defined as follows: 

            Group 1: the message size is fixed to 760 bits, 

which is     encrypted and decrypted with varied key size 

from 768 to 8192 bits. 

Group 2: input messages varied in size that is 

convenient with the size of the encryption key (one byte less 

than modulus size). 

Group 3: Varying the block size to be multiple of 

message size in steps of 50 to 600. Here, we are more 

interested to determine the speed up gain as far as the 

throughput is concerned. 

The experiment was carried out on a laptop with the 

following specification: 

 

 CPU: Intel Core I7-2670QM at 2.20GHz clock 

frequency. 

 Memory: 12.0 GB. 

 GPU: NVIDIA GeForce GT630M consists of 96 

cores. 

 System: Windows 7 Home Premium.  

The results of applying group1 are tabulated in Table 1 

and 2; as the results of applying group2 are tabulated in Table 

3 and 4. According to Table 1, it is clear that no significant 

difference in execution time between the Crypto++ library and 

our sequential implementation. To ensure fair speed up for the 

parallel implementation, we consider the sequential time of 

our sequential version. As for the execution time shown in 

Table 1 and Table 3, it is seen that the GPU implementation 

begin to be faster than the other two implementation when the 

key size is 3072 bits and higher.  

Table 1. The execution time (latency) in Milliseconds 

for encryption of 760 bits message length with variant key 

size 

 

Key Size 

in bits 

 Crypto++  Sequential 

CPU 

Multi -

thread 

CPU 

Many 

core 

GPU 

768 --- 0.110 0.87 1.08 
1024 0.500 0.130 0.94 0.92 
2048 --- 0.49 1.28 0.91 
3072 --- 0.85 1.4 0.8 
4096 --- 1.54 1.9 0.99 
6144 --- 4.01 3.13 1.95 
8192  --- 5.93 3.9 1.980 

 

Table 2. The execution time (latency) in Milliseconds for 

decryption of 760 bits message length with variant key size 

 

Key Size 

in bits 

Crypto++ Sequential 

CPU 

Multi- 

thread 

CPU 

Many 

core 

GPU 

768 --- 5.03 5.46 2.42 

1024 7.000 8.89 7.89 2.78 

2048 --- 76.294 38.662 9.27 

3072 --- 250.034 73.984 23.621 

4096 --- 411.453 140.378 41.592 

6144 --- 1727.579 369.301 93.315 

8192 --- 2664.313 724.961 201.071 

 

From Table 2 and Table 4 it can be seen that the time taken to 

decrypt a message is more than that needed to encrypt one; 

that is due the public exponent e is taken small than the 

private exponent.as for the execution time the GPU exceed the 

other two for all key size; also it can be inferred that the GPU 

is more powerful with heavy computations. 

 

Table 3. The execution time in (Milliseconds) for 

encryption of variant key size 

Key Size in 

bits 

Sequential 

CPU 

Multithread 

CPU 

Many core 

GPU 

768 0.56 0.87 1.08 

1024 0.75 0.9 1.13 

2048 1.04 2.82 1.9 

3072 2.99 4.38 2.6 

4096 6.8 6.22 4.64 

6144 24.801 12.74 8.63 

8192 45.822 20.321 11.76 
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In order to judge the performance of the parallel 

implementation, the speed up factor is calculated for Table 1, 

2, 3, and 4 as explained in equation 1; where S1 is the speed 

up factor for the multithread CPU implementation and S2 is 

the speed up factor for the many core GPU implementation.  

 

Table 4. The execution time in (Milliseconds) for 

decryption of variant key size 

Key Size in 

bits 

Sequential 

CPU 

Multithread 

CPU 

Many 

core 

GPU 

768 5.03 5.46 2.42 

1024 11.46 9.88 2.84 

2048 158.339 63.003 17.29 

3072 604.494 192.931 50.122 

4096 1923.45 607.834 111.546 

6144 9671.104 2062.689 461.236 

8192 28628.04  4736.691 1244.781 

 

According to Table 5 and 6, the speed up factor is not very 

high for the encryption process; however, for the decryption 

process it can be seen that the multithread only gains ~6X 

speed up; when the many core GPU gains ~23X; so the speed 

up is much higher with the many core GPU implementation. 

 

Table 5. The speed up factor calculated for Table 1 and 

Table 2 

 

Decryption Encryption Key Size in 

bits S2 S1 S2 S1 

2.078 0.921 0.101 0.126 768 

3.917 1.224 0.141 0.138 1024 

8.230 1.973 0.538 0.382 2048 

10.585 3.379 1.062 0.607 3072 

12.035 3.566 1.555 0.810 4096 

18.513 4.677 2.056 1.281 6144 

18.627 5.166 2.994 1.520 8192 

 

Table 6. The speed up factor calculated for Table 3 and 

Table 4 

 

Decryption Encryption Key Size in 

bits S2 S1 S2 S1 

2.078 0.921 0.518 0.643 768 

4.035 1.159 0.132 0.166 1024 

9.157 2.512 0.547 0.368 2048 

12.06 3.133 1.150 0.682 3072 

17.243 3.164 1.465 1.093 4096 

20.967 4.688 2.873 1.946 6144 

22.998 6.043 3.896 2.254 8192 

 

The results of applying group3 are tabulated in Table 7 and 8; 

from Table 3 to encrypt one message with 1024 bits key it 

takes 0.75 ms for sequential version which means to encrypt 

600 messages it would take 450 ms but as we see in Table 7 it 

takes 1262.272 ms which means more time due to looping 

overhead; now let see the speed up gain for multithread 

version. From Table 3 to encrypt one message with 1024 bits 

key it takes 0.9 ms for multithread that means to encrypt 600 

messages it would take 540 ms but as we see in Table 7 it 

takes 439.475 ms which means it is 1.228 times faster than the 

expected one due to free resources available for computing 

that could be occupied by available threads. Finally, the same 

observation could be noted for the GPU environment. From 

Table 3 to encrypt one message with 1024 bits key it takes 

1.13 ms for many core GPU that means to encrypt 600 

messages it would take 678 ms but as we see in Table 7 it 

takes 431.194 ms, which means it is 1.572 times faster. 

 

Table 7. The execution time in (Milliseconds) for  

encryption of No of messages with 1024 bits key 

 

No. of 

Message 

Crypto++ Sequential 

CPU 

Multi 

thread 

CPU 

Many 

core 

GPU 

50 72.04 78.004 29.341 33.321 

100 165.1 155.408 59.383 61.603 

150 181.06 179.71 105.106 96.675 

200 352.04 348.92 131.147 131.177 

250 400.213 389.014 153.64 147.64 

300 425.69 417.001 160.76 148.63 

350 444.11 438 187.09 179.41 

400 551.24 544.543 281.446 275.215 

600 1301.45 1262.272 439.475 431.194 

While for the results from Table 8 of the decryption process; 

it can be seen that  the GPU implementation is approximately 

14 time faster, while the multithread CPU is 2.17 faster; this 

approve the ability of the GPU to deal with large data . 

 

Table 8. The execution time in (Milliseconds) for 

decryption of No of messages with 1024 bits key 

 

No. of 

Message 

Crypto++ Sequential 

CPU 

Multi 

Thread 

CPU 

Many 

core 

GPU 

50 623.5 540.63 216.522 47.042 

100 1217.051 1136.935 476.607 78.534 

150 2360.61 1796.353 580.793 99.445 

200 2626.078 2243.748 939.853 145.188 

250 2715.921 2390.824 1020.292 157.43 

300 3050.214 2986.116 792.691 158.76 

350 3560.041 3367.687 1124.443 215.53 

400 4740.12 4697.208 1851.426 273.635 

600 6021 5958.671 2734.996 413.883 

 

The throughput (message processed per second) for 

decryption process with key sizes 1024 and 2048 bits are 

shown in Figures 3, and 4 respectively. The throughput gained 

by the GPU exceeds the multithread and sequential 

implementations; the throughput gained for 1024 bits is ~1800 

msg/sec; as for 2048 bits is ~250 msg/sec. 

6. CONCLUSIONS 
This paper proposed three variants implementations of 

executing modular exponentiation using the Montgomery 

algorithm, which is the essential computational operation in 
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cryptosystems like RSA; the experiments are conducted on a 

laptop with Intel Core I7-2670QM, 2.20 GHz CPU and 

Nvidia GeForce GT630M GPU. The GPU implementation 

gained approximately 23 speed up factor over the sequential 

CPU implementation; while the multithread CPU 

implementation gained only 6 speed up factor over the 

sequential CPU implementation as far as the latency is 

concerned. Furthermore, additional speedup could be gained 

as far as the throughput is concerned; the throughput gained 

for 1024 bits is ~1800 msg/sec; as for 2048 bits is ~250 

msg/sec. Due to overlapping of multithread operation 

whenever free resources are available. Results reveal that the 

GPU is appropriate to speed up the RSA algorithm. In the 

future work, we will focus on implementing another 

cryptographic algorithm like elliptic curve. 

 

 
Figure 3. 1024 bits decryption throughput 

Figure 4. 2048 bits decryption throughput 
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