
International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 12, May 2014

15

Design and Implementation of Real Time Face

Recognition System (RTFRS)

Zahraa Qasem Jaber

Computer Engineering Department,
College of Engineering, University of Baghdad

Al-Jadriyah, Baghdad, Iraq

Mohammed Issam Younis, Ph.D
Computer Engineering Department,

College of Engineering, University of Baghdad
Al-Jadriyah, Baghdad, Iraq

ABSTRACT
Face recognition is a pattern recognition technique and one of

the most important biometrics; it is used in a broad spectrum

of applications. The accuracy is not a major problem that

specifies the performance of automatic face recognition

system alone, the time factor is also considered a major factor

in real time environments. Recent architecture of the

computer system can be employed to solve the time problem,

this architecture represented by multi-core CPUs and many-

core GPUs that provide the possibility to perform various

tasks by parallel processing. However, harnessing the current

advancements in computer architecture is not without

difficulties. Motivated by such challenge, this paper proposes

a Real Time Face Recognition System (RTFRS). In doing so,

this paper provides the architectural design, detailed design,

and four variant implementations of the RTFRS. Finally, this

paper determines the speed up obtained for the three advanced

implementations (i.e., Hybrid Parallel model, CPU Parallel

model, and Hybrid Mono model) against the convention

implementation (i.e., CPU Mono model). The practical results

demonstrate that the Hybrid Parallel model gain highest speed

up around 82X, CPU Parallel model also have a high speed up

around 71X, and finally, the Hybrid Mono model gives a

slight speed up about 1.04X.

General Terms

Parallel Processing, Parallel Computing, Recognition

Algorithm, Multithreading and Concurrent Computing,

Heterogeneous Computing

Keywords

SIMT; GPU; Parallel algorithms; Heterogeneous computing;

UML

1. INTRODUCTION
 Face recognition is one of the most important biometrics

methods [1]. Despite the fact that there are more reliable

biometric recognition techniques such as fingerprint and iris

recognition, these techniques are intrusive and their success

depends highly on user cooperation [2]. Therefore, face

recognition seems to be the most universal, non-intrusive, and

accessible system. It is easy to use, can be used efficiently for

mass scanning, which is quite difficult, in case of other

biometrics [3]. Also it is natural and socially accepted [4].

Moreover, technologies that require multiple individuals to

use the same equipment to capture their biological

characteristics probably expose the user to the transmission of

germs and impurities from other users. However, face

recognition is completely non-intrusive and does not carry

any such health dangers [5]. A face recognition system

comprises five models as shown in Figure 1.

Figure1. Face Recognition System

Acquisition the image of an individual face model is the entry

point of the face recognition process. There are two ways to

acquire an image: A) Digitally scan an existing photograph,

the source is a file; B) Acquire a live picture of a subject [6].

Face Detection Model is the first step in automated face

recognition. Its reliability has a significant impact on the

performance and usability of the whole face recognition

system. Given a single image, the best face detector should be

capable of identifying and locating all the present faces

regardless of their scale, orientation, age, position, and

expression. In addition, the detection should be irrespective of

unrelated illumination conditions in the image content. Thus,

the face detection can be considered as a task of

discriminating between face and non face and segments

certain face region from cluttered views [7]. Pre-processing

model should be applied before feature extraction [8]. It

includes images processing to improve the input image in

order to get better quality and therefore making the

recognition process with less effort by decreasing time

complexity; this can significantly enhance and improve the

performance of the overall face recognition system [9].

Feature Extraction for face representation is a central issue in

face recognition. Feature extraction algorithms aim at finding

effective information that is useful for distinguishing between

faces of different persons [7]. In the classification, based on

identification concept, face identification system has to

determine the identity of the input face image based on

comparisons among all templates stored in a database (DB)

[10]. Face recognition is a computationally intensive process

and needs heavy resources. For many applications,

identification process has time constraints to be considered

real-time, using sequential execution of such algorithms do

not achieve this goal for a large database especially of high

resolution images. Today, Current laptops and desktops

equipped with recent technologies of multi-core CPUs and

many core GPUs that can be employed to speed up the

execution time of real time face recognition systems.

Graphics Processing Unit (GPU) is powerful co-processors

that can offer different advantages to Central Processing Units

(CPUs), and the modern GPU provides hundreds of streaming

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 12, May 2014

16

cores and handles thousands of threads, which makes it

specifically suitable for compute intensive applications.

Multi-core processors integrate multiple execution cores on a

single processor chip. The operating system treats each

execution core as an independent logical processor with

separate execution resources like functional units or execution

pipelines; therefore, the operating system can assign different

application programs to the different cores to get a parallel

execution. By using techniques of parallel programming, it is

possible to execute a computation intensive application

program in parallel on a set of cores, results in reducing the

execution time compared to the execution time on a single-

core. Recent technologies make it possible to use GPU with

CPU creating what's known as a "Hybrid (Heterogeneous)

System's". The goal of using GPU with CPU in this paper is to

release some CPU overhead by sharing GPU in the process of

face detection. The difference in execution time to run any

process on CPU or GPU will be clear when CPU is engaged

by heavy duties.

Performance is the most factor effect to apply whether or not

a face recognition algorithm could be used. This paper

proposes a Real Time Face Recognition System (RTFRS).

RTFRS will be tested by taking into consideration the

performance as far as the speed up is concerned. In doing so,

this paper introduces: the architecture design, planning the

implementation by selecting suitable algorithms and tools, the

detailed design and implementation of the RTFRS, and

finally, makes a fair comparison of variant implementations of

the RTFRS.

2. FACE IMAGE DETECTION MODEL
Face detection is the elementary step in the face recognition

system and acts as a stone to all facial analysis algorithms.

Many algorithms exist to implement face detection; each has

its own weaknesses and strengths. The majority of these

algorithms suffer from the same difficulty; they are

computationally expensive. The image is a combination of

color or light intensity values. Analyzing these pixels for face

detection is time consuming and hard to implement because of

the enormous diversity of shape and pigmentation in the

human face. Viola and Jones proposed an algorithm, called

Haar-cascade Detector or called Viola-Jones, to quickly detect

any object, including human faces, using AdaBoost classifier

cascades that are based on Haar-like features and not pixels

[11]. Viola-Jones algorithm is widely used in various studies

involving face processing because of its real-time capability,

high accuracy, and availability as open-source software under

the Open Computer Vision Library (OpenCV) [8]. Viola-

Jones detectors can be trained to recognize any kind of a solid

object, including human faces and facial features such as eyes,

and mouths. OpenCV has implemented Viola-Jones and

provides a pre-trained Haar-cascade for face detection [12].

3. FISHERFACE / LDA
Fisherface is also known as Linear Discriminant Analysis

(LDA). It is more suited for finding projections that best

discriminate different classes. It does this by looking for the

optimal projection vectors which maximize the ratio of the

between-class scatter and the within-class scatter separation,

same classes should cluster strongly together, whereas

different classes are as far away as possible from each other

[13], [14]. One problem for LDA is that the within-class

scatter matrix is almost always singular, which is a small

sample size problem. The reason is that the number of all the

pixels in each sample images is usually larger than the number

of training sample images [15]. The singularity problem can

raise detection error rate if there is a large difference in pose

or lighting condition in the same face images. The Fisherface

approach can take full account of within-class information;

minimizing difference within each class and then the problem

with variations in the same images such as different lighting

conditions can be overcome [13]. The Fisherface algorithm is

as follows [14]:

Let be a random vector with samples drawn from c classes:

 ……….., }

 =

The scatter matrices and are calculated as:

 =

 (–) –

 = – –

, where is the total mean:

 =

And is the mean of class {1, …., c}:

 =

Fisher’s classic algorithm now looks for a projection w, which

maximizes the class reparability criterion:

 =

A solution for this optimization problem is given by solving

the General Eigenvalue Problem:

 =

 =

There’s one problem left to solve: The rank of is at most (N-

c), with N samples and c classes. In pattern recognition

problems, the number of samples N is almost always smaller

than the dimension of the input data (the number of pixels).

As so, the scatter matrix becomes singular. In order to avoid

this problem, a PCA (Principal Component Analysis) can be

applied on the data and projecting the samples into the (N-c)

dimensional space first. Next, LDA is performed on the

reduced data. As a result, the scatter matrix is non-singular

anymore. The optimization problem can then be defined as:

 =

 =

The transformation matrix W that projects a sample into

the(c-1) dimensional space is then given by:

W =

4. THE ARCHITECTURAL DESIGN OF

RTFRS
This section describes the architectural design of RTFRS,

involve: the Mono (sequential) and Parallel face recognition

concepts.

The face recognition is the hardest algorithm because it has

many steps before it start the real recognition. A face must be

detected to increase the possibility of recognition and speed

up the process by choosing one location in the image. To

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 12, May 2014

17

detect a face, two steps must be done before the recognition.

The first step is to resize the image to standard size (determine

by the administrator), apply some filter to increase the quality,

and convert the image into a compatible form. Next, go to

detection face, such that the image required to recognize is

uploaded in the memory with an Extensible Markup Language

(XML) file to detect a face, and finally, go to recognition step.

In recognition, the extracted face will be compared with

training faces when they uploading to memory and extract

face features by a recognition algorithm.

Any operating system (OS) has multiple ways to deal with a

process for different structures. Some process has a single

thread and other has multithreads architecture (threads can run

in a simultaneous manner). In this paper, mono is a

description for a single core CPU and parallel is a description

for a multi-core CPU (i.e., the suggested names are taken with

respect to CPU). In addition, the hybrid word is used

whenever the computation involves the GPU, as well as, the

CPU in a heterogeneous manner. Based on the previously

mentioned conventions, four variants of (RTFRS) will be

implemented depending on the hardware resources that

employed in the computer system architecture. The first one is

CPU Mono (single core CPU), the second is CPU Parallel

(multi-core CPU), the third is Hybrid Mono (single core CPU

with GPU), and finally Hybrid Parallel (multi-core CPU

with GPU).

4.1 CPU Mono Face Recognition
In mono face recognition, both detection and recognition

phases are running on a single core CPU and all face

recognition phases run sequentially (i.e., step by step),

because the hardware resources are limited and this leads to

very slow face recognition system, as shown in Figure 2.

Figure 2. CPU Mono Face Recognition

4.2 CPU Parallel Face Recognition
In the parallel face recognition process, two tasks can be done

simultaneously. The process of uploading training face images

in the memory and the process of getting face features from

the training face images. The multithreading capability can be

applied on multi-core CPU to perform the recognition

process, as shown in Figure 3.

4.3 Hybrid Mono Face Recognition
Using GPU increases the speed to find a face by using face

recognition algorithm. As so, in hybrid solution the image is

sent to GPU for detecting the face. Next, the result is sent

back from GPU to the CPU in order to complete the process,

as shown in Figure 4.

4.4 Hybrid Parallel Face Recognition
This variant uses maximum allowable hardware resources

represented by GPU and multi-core CPU; this is done by

running the face detection process on many-core GPU and

recognition process on multi-core CPU. It is also employing

concurrent execution of both the process of uploading training

face images in the memory, and the process of getting face

features from the training face images by exploiting the

multithreading capability on the multi-core CPU system as

shown in Figure 5.

5. PLANNING THE

IMPLEMENTATION OF THE RTFRS
This section gives the specification of the building blocks of

the RTFRS includes the selection of algorithms, tools, and

finally, the data flow in RTFRS. Viola-Jones Face Detector is

selected to detect faces. While, Fisherface algorithm is

selected as the recognizer algorithm. The four variants use the

same selected algorithms for detection and recognition phases.

The construction of the RTFRS consists of the following basic

building blocks that facilitate the developing purpose.

 Microsoft .Net framework 4.

 C# programming language.

 Open Computer Vision (OpenCV) version 2.4.8.

 NVIDIA GPU and CUDA.

 EmguCV version windows universal CUDA

2.9.0.1922.

 Multi-core CPU.

The dataflow among the selected tools is illustrated in Figure

6.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 12, May 2014

18

Figure 3. CPU Parallel Face Recognition

Figure 4. Hybrid Mono Face Recognition

Figure 5. Hybrid Parallel Face Recognition

6. DETAILED DESIGN AND

IMPLEMENTATION OF THE RTFRS
This section describes the detailed design in terms of flow

chart and activity diagrams for the proposed RTFRS.

Moreover, the implementation details are explained in terms

of pseudo code of the RTFRS.

Figure 6. Dataflow in the RTFRS

Activity diagrams are graphical representations of workflows

of stepwise activities and actions with support for choice,

iteration and concurrency. In the Unified Modeling Language

(UML), activity diagrams are intended to model both

computational and organizational processes (i.e. workflows).

Activity diagrams show the overall flow of control. In

RTFRS, the main activity is the training phase and the other

one is the recognition phase. The activity diagram for the

training phase is shown in Figure 7, and the corresponding

steps' activities are tabulated in Table 1. Similarly, the activity

diagram for the recognition phase is shown in Figure 8, and

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 12, May 2014

19

the corresponding steps' activities are tabulated in Table 2.

Also, the pseudo code for the training and the recognition

phases are shown in Figure 9 and Figure 10 respectively.

Figure 7. Activity Diagram of Training Phase

Table 1. Activity Table of Training Phase in RTFRS

Figure 8. Activity Diagram of Recognition Phase (Hybrid

Parallel Implementation)

Table 2. Activity Table of Recognition Phase in RTFRS

Step

Number
Activities

1 Sends Image from folder to start the module work.

2 Image resizing in to a fixed size; determined by the
administrator; then applying some image processing

filters to increase image quality.

3 New Image applies Haar-cascades algorithm to detect

the face and remove other parts of image.

4 Clone the image and insert the subject name.

5 Create file in a hard disk to new image and save the

image path and image name in XML DB.

Step
Number

Activities

1 Sends Image from folder to start the module work.

2 Image resizing in to a fixed size; determined by the
administrator; then applying some image processing

filters to increase image quality.

3 New Image goes to GPU to apply Haar-cascades

algorithm to detect the face and remove other parts of

image, then the result is returned to CPU.

4
Load train images from DB to RAM and extract features

from them in parallel. Next, the CPU extracts the face

features from new face and compares with other face
features of the training images.

5 If find a face from DB closes to the detected face the

system recognized the person by displaying the name in

the GUI; otherwise; the system displays a message for

an unknown person.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 12, May 2014

20

Figure 9. The Pseudo Code for Training Phase

Figure 10. The Pseudo Code for the Recognition Phase

RTFRS has a main form named “master form” which is the

basic GUI, and it contains the control running to the basic

modules that perform the face recognition process. The master

form has one sub form for training, and four other sub forms

for recognition. By drop down menu, the sub form can be

selected to be opened. The CPU Mono Training Form enables

the user to select the source of the image (i.e., the image

comes from a file). After the system detects a face, the user

can write the person's name in the text filed, click save button

to write result log in the database, save the face image and the

name in image’s DB, this form is running in a single core

CPU. Unlike the training phase, which is implemented in

CPU Mono model, the recognition phase has four separate

models. These four variant models are CPU Mono, CPU

Parallel, Hybrid Mono, and Hybrid Parallel. In a CPU Mono

Recognition, the master form kept the same, an image from a

folder in hard disk can be selected, this image will display in

the image box, then the system will detect the face and search

if this face is predefined in database to get face name in the

text filed and then click save button to write the result log in

database.

Time will be measured in each step in training and recognition

models and also the overall time (for total steps) will be

measured and saved in the DB in order to measure the

performance factor in later procedures.

7. THE RESULTS AND EVALUATION
Speed up is a measure that captures the comparative gain of

solving the same computational problem in parallel. The

speed up of parallel computation operating on p processors is

derived as:

Sp =

Where Ts is the execution time taken to perform the

computation on a uni-processor system and Tp is the

execution time on a multiprocessor system with scale p when

solving the same computation task [16]. Because all the

measured time has been saved in the DB, the DB can be

accessed in order to view all the timing values gained from all

the four implementation variants, there are forms can be

displayed to show all logs of timing measures.

Experimentation has been made to evaluate the RTFRS in

order to judge which one of the implementation alternatives

reduces the processing time significantly. The experiment

consists of applying 400 images for 40 persons' faces (10

images per person), defining, training, and recognizing these

pictures on the four implementation variants (i.e., CPU Mono,

CPU Parallel, Hybrid Mono and Hybrid Parallel). The

experiment is taken place on the same environment; in order

to get a fair comparison for variant implementations. It should

be mentioned that the speed up is measured using speed up

equation mentioned above. In addition, the results of the four

algorithm variants are applied for the same number of persons'

images.

Execution Time (measured in ms) to recognize variable

number of images running on variant implementations is

tabulated in Table.3. According to Table.3, the shaded field

represents the fastest variant (i.e., the Hybrid Parallel), using

the same framework on 400 face images, therefore, employing

parallel processing provides better speed up.

1. Initialization

 Select how to get image

open file dialog to select image

Create Bitmap P

Put new image in P

Send P , image-viewer width , height and

quality=72

 to Resize new image and set its quality 72

Calculate time

Add log DB

2. CPU part (Face detection)

Load Haar cascades XML and objects H

Hdetect(P)

Create new CPU bitmap P_CPU

Send H.result P_CPU

Calculate time

Add log DB

3. CPU part (Face saving)

If (P_CPU not = empty) then

P_gray P_CPU. grayscale

Take face name from GUI P_name

Create image file P_file

P_fileP_gray

P_file.name = P_name + random

Numebr

Save P_file in Hard Disk

Calculate time

Add log DB

1. Initialization

Select how to get image

open file dialog to select image

Create Bitmap P
Put new image in P

Send P , image-viewer width , height and

quality=72 to Resize new image and set its
quality 72

Calculate time

Add log DB

2. GPU part (Face detection)

 Open new bitmap in GPU memory P-GPU

Send P P-GPU
 Load Haar cascades XML and objects H

Hdetect(P-GPU)

Create new CPU bitmap P_CPU
Send H.result P_CPU

Calculate time

Add log DB

3. CPU part (Face recognition)

 Create object from faceReco class P_Reco

If (P_CPU not = empty) then
Open Parallel Case

{ P_Reco load All Training Faces

P_Reco Extract face features for All
Training Faces}

P_Reco find P_CPU

 Extract P_CPU features
 Compare all features faces with P_CPU

features

 If find = true

 Print P_CPU.name on screen

 Else Print “Unknown” on screen

Calculate time
Add log DB

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 12, May 2014

21

Figure 11. Speed up Gains with respect to the CPU Mono Implementation

Since all the four variant implementations run on the same

conditions, and the CPU Mono Recognition is the slowest

than all other three variants, therefore, the speed up is

measured of the three other variants with respect to the CPU

Mono implementation using the same speed up equation.

Figure 11 represents the speed up gains with respect to the

CPU Mono Implementation.

The Hybrid Parallel Recognition is the fastest algorithm

variant among the all, because it provides an overall (average)

speed up around (82) times. The CPU Parallel provides an

overall speed up around (71). Finally, the Hybrid Mono

provides a little improvement about (1.04).

Table 3. The Execution Time (ms) to Recognize

Variable Number of Images Running on Variant

Implementations

8. CONCLUSIONS
This paper proposed a real time face recognition system

(RTFRS). RTFRS has been implemented in four

implementation variants (i.e., CPU Mono, CPU Parallel,

Hybrid Mono and Hybrid Parallel. Fisherface algorithm is

employed to implement recognition phase and Haar-cascade

algorithm is employed for the detection phase. In addition,

these implementations are based on industrial standard tools

involve Open Computer Vision (OpenCV) version 2.4.8,

Microsoft .Net framework 4, C# programming language,

EmguCV version windows universal CUDA 2.9.0.1922, and

heterogeneous processing units. The experiment consists of

applying 400 images for 40 persons' faces (10 images per

person), defining, training, and recognizing these images on

these four variants, the experiment is taken place on the same

environment (laptop computer Intel core i7 processor 2.2

GHz, Nvidia GPU GeForce GT 630M, 7GB RAM). The

speed up factor is measured with respect to the CPU Mono

implementation (the slowest than all other three variants). The

practical results demonstrated that, the Hybrid Parallel

Recognition is the fastest algorithm variant among the all,

because it gives an overall speed up around (82) times. The

CPU Parallel gives an overall speed up around (71). Finally,

the Hybrid Mono gives a little improvement about (1.04).

Thus, employing parallel processing on modern computer

architecture can accelerate face recognition system.

9. ACKNOWLEDGMENTS
The authors desire to express their gratitude and thanks to the

computer center at the University of Baghdad for their support

to this work, and offer thanks and appreciation for everyone

who contributes in doing this work.

10. REFERENCES
[1] See, J.; Eswaran, C. and Fauzi, M. F. A. "Video-Based

Face Recognition Using Spatio-Temporal

Representations", in Reviews, Refinements and New

Ideas in Face Recognition, Corcoran P. ,Ed., InTech,

Croatia, pp. 273-293, 2011.

[2] Rady H. “Face Recognition using Principle Component

Analysis with Different Distance Classifiers”,

International Journal of Computer Science and Network

Security, Vol. 11 No. 10, pp. 134-143, October 2011.

[3] Patel R.; Rathod N. and Shah A. “Comparative Analysis

of Face Recognition Approaches: A Survey”,

International Journal of Computer Applications, Vol. 57,

No. 17, pp.50-61, November 2012.

Sp
ee

d
 u

p

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 12, May 2014

22

[4] Xie, S. J.; Yang J.; Park, D. S. ; Yoon, S. and Shin, J.

“State of the art in biometrics” in Iris Biometric

Cryptosystems, Yang, J. and Nanni, L., Eds., InTech, ,

Croatia, pp. 179-202, July 2011.

[5] Jafri R. and Arabnia, H. “A Survey of Face Recognition

Techniques”, Journal of Information Processing Systems,

Vol. 5, No. 2, pp. 41-68, June 2009.

[6] Bhatia R. “Biometrics and Face Recognition

Techniques”, International Journal of Advanced

Research in Computer Science and Software

Engineering, Vol. 3, No. 5, pp. 93-99, May 2013.

[7] Li S. and Jain A. “Handbook of Face Recognition”, 2nd

edition, Springer, 2011.

[8] Jain A.; Ross A. and Nandakumar K. “Introduction to

Biometrics: A Textbook”, Springer, 2011.

[9] Krishna B.; Bindu V.; Durga K. and AshokKumar G.

“An Efficient Face Recognition System by Declining

Rejection Rate using PCA”, International Journal of

Engineering Science & Advanced Technology, Vol. 2,

No. 1, pp. 93 – 98, February 2012.

[10] Lih-Heng C.; Sh-Hussain S. and Chee-Ming T. “Face

Biometrics Based on Principal Component Analysis and

Linear Discriminant Analysis”, Journal of Computer

Science, Vol. 6, No. 7, pp. 693-699, 2010.

[11] Wilson P. and Fernandez J. “Facial Feature Detection

using Haar Classifiers”, The Journal of Computing

Sciences in Colleges, Vol. 21, No. 4, pp. 127-133, April

2006.

[12] Runarsson K." A Face Recognition Plug-in for the

PhotoCube Browser”, M.Sc. thesis, Reykjavik

University, December 2011.

[13] Bedre J. S. and Sapkal S. “Comparative Study of Face

Recognition Techniques: A Review”, International

Journal of Computer Applications, Vol. 1, No. 1, pp. 12-

15, 2012.

[14] Philipp Wagner, “Face Recognition with Python”,

available at: http://www.byte_sh.de, last accessed 20

April 2014.

[15] Zhao Q.; Liang B. and Duan F. “Combination of

Improved PCA and LDA for Video-Based Face

Recognition”, Journal of Computational Information

Systems, Vol. 9, No. 1, pp. 273-280, 2013.

[16] Xiong H.; Zeng G.; Zeng Y.; Wang W. and Wu C. “A

Novel Scalability Metric about Iso-Area of Performance

for Parallel Computing”, The Journal of

Supercomputing, Springer, December 2013.

IJCATM : www.ijcaonline.org

https://plus.google.com/102725420896943303368

