عنوان المقالة:Quasi-Compactness in Quasi-Banach Spaces p , for 0  p 1
رحيم احمد منصور الصفوري | Raheam Ahmad Mansor Al-Saphory | 6284
نوع النشر
مجلة علمية
المؤلفون بالعربي
Raheam A. Mansor Al-Saphory, Mahmood K Jasim
الملخص العربي
Quasi-compactness in a quasi-Banach space for the sequence space , p  0  p 1 has been introduced based on the important extension of Milman’s reverse Brunn-Minkowiski inequality by Bastero et al. in 1995. Moreover, Many interesting results connected with quasi-compactness and quasi-completeness in a quasi-normed space , p  for 0  p 1 have been explored. Furthermore, we have shown that, the quasi-normed space under which condition is a quasi Banach space. Also, we have shown that the space if it is quasi-compact in quasi normed space then it is a quasi- Banach space and the converse is not true. Finally, a sufficient condition of the existence for a quasi-compact operator from  p  p  has been presented and analyzed.
تاريخ النشر
09/11/2013
الناشر
Journal of Advances in Mathematics
رابط DOI
10.13140/R
رابط الملف
تحميل (212 مرات التحميل)
رابط خارجي
https://cirworld.com/index.php/jam/article/view/1015/2412
الكلمات المفتاحية
Sequence space , p  0  p 1; 𝑞-normed space; 𝑞-Banach space; 𝑞-compact space.
رجوع