عنوان المقالة:The Potential Impact of Biofield Energy Treatment on the Atomic and Physical Properties of Antimony Tin Oxide Nanopowder The Potential Impact of Biofield Energy Treatment on the Atomic and Physical Properties of Antimony Tin Oxide Nanopowder
Alice Branton | Alice Branton | 1648
نوع النشر
مجلة علمية
المؤلفون بالعربي
Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak, Omprakash Latiyal, Snehasis Jana
المؤلفون بالإنجليزي
Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak, Omprakash Latiyal, Snehasis Jana
الملخص العربي
Antimony tin oxide (ATO) is known for its high thermal conductivity, optical transmittance, and wide energy band gap, which makes it a promising material for the display devices, solar cells, and chemical sensor industries. The present study was undertaken to evaluate the effect of biofield energy treatment on the atomic and physical properties of ATO nanopowder. The ATO nanopowder was divided into two parts: control and treated. The treated part was subjected to Mr. Trivedi’s biofield energy treatment. The control and treated samples were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and electron spin resonance (ESR) spectroscopy. The XRD data revealed that the crystallite size on the plane (110) was significantly reduced to 53.1 nm as compared to the control (212.6 nm). In addition, the lattice parameter, unit cell volume, density, and molecular weight were also altered as compared to the control. The FT-IR spectra showed that the stretching vibration corresponding to Sn-OH was shifted to higher wavenumber (512 cm-1) in the treated sample as compared to the control (496 cm-1). Besides, ESR spectral analysis exhibited that the g-factor was reduced in the treated ATO sample by 21.1% as compared to the control. Also, the ESR signal width and height were reduced by 70.4% and 93.7%, respectively as compared to the control. Hence, the XRD, FT-IR, and ESR data revealed that the biofield energy treatment has a significant impact on the atomic and physical properties of ATO nanopowder. Therefore, the biofield energy treatment could be more useful in display devices and solar cell industries.
الملخص الانجليزي
Antimony tin oxide (ATO) is known for its high thermal conductivity, optical transmittance, and wide energy band gap, which makes it a promising material for the display devices, solar cells, and chemical sensor industries. The present study was undertaken to evaluate the effect of biofield energy treatment on the atomic and physical properties of ATO nanopowder. The ATO nanopowder was divided into two parts: control and treated. The treated part was subjected to Mr. Trivedi’s biofield energy treatment. The control and treated samples were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and electron spin resonance (ESR) spectroscopy. The XRD data revealed that the crystallite size on the plane (110) was significantly reduced to 53.1 nm as compared to the control (212.6 nm). In addition, the lattice parameter, unit cell volume, density, and molecular weight were also altered as compared to the control. The FT-IR spectra showed that the stretching vibration corresponding to Sn-OH was shifted to higher wavenumber (512 cm-1) in the treated sample as compared to the control (496 cm-1). Besides, ESR spectral analysis exhibited that the g-factor was reduced in the treated ATO sample by 21.1% as compared to the control. Also, the ESR signal width and height were reduced by 70.4% and 93.7%, respectively as compared to the control. Hence, the XRD, FT-IR, and ESR data revealed that the biofield energy treatment has a significant impact on the atomic and physical properties of ATO nanopowder. Therefore, the biofield energy treatment could be more useful in display devices and solar cell industries.
تاريخ النشر
21/12/2015
الناشر
Science Publishing Group
رقم المجلد
3
رقم العدد
6
ISSN/ISBN
2330-8486
رابط DOI
https://doi.org/10.11648/j.ajop.20150306.11
الصفحات
123-128
رابط الملف
تحميل (69 مرات التحميل)
رابط خارجي
https://www.trivedieffect.com/science/the-potential-impact-of-biofield-energy-treatment-on-the-atomic-and-physical-properties-of-antimony-tin-oxide-nanopowder
الكلمات المفتاحية
Antimony Tin Oxide, Nanopowder, Biofield Energy Treatment, X-Ray Diffraction, Fourier Transform Infrared, Electron Spin Resonance
رجوع