عنوان المقالة:الحمل المختلط لموائع نانويه في حيز شبه منحرف متحرك Numerical investigation of mixed convection heat transfer of nanofluids in a lid-driven trapezoidal cavity
الاستاذ الدكتور احمد كاظم حسين | Prof.Dr. Ahmed Kadhim Hussein | 5658
Publication Type
Journal
Arabic Authors
علي خليل , حسين محمد , احمد كاظم حسين , شيان جو
English Authors
Ali Khaleel Kareem , H.A.Mohammed , Ahmed Kadhim Hussein , Shian Gao
Abstract
الحمل المختلط لموائع نانويه في حيز شبه منحرف متحرك
Abstract
Mixed convection heat transfer in a two-dimensional trapezoidal lid-driven enclosure filled with nanofluids heated from below is numerically studied. The governing equations for both fluid flow and heat transfer are solved by using the finite volume method (FVM). The bottom wall of the enclosure is heated while the upper wall is cooled at lower temperature and the other two sidewalls are adiabatic. Four types of nanofluids (Al2O3, CuO, SiO2, and TiO2 with purewater)with nanoparticle volumefraction (ϕ) inthe rangeof 1–4% and nanoparticle diameter in the range of 25–70 nm were used. This investigation covers Richardson number and Reynolds number in the ranges of 0.1–10 and 100–1200, respectively. The trapezoidal lid-driven enclosurewas studied for different rotational angles (Φ) in the range of 30°–60°, different inclination sidewalls angles (γ) in the range of 30°– 60° and various aspect ratios (A) ranged from 0.5 to 2. This investigation is also examined the opposing and aiding flow conditions. The results show that all types of nanofluids have higher Nusselt number compared with pure water. It is found that SiO2–water has the highest Nusselt number followed by Al2O3–water, TiO2– water, and CuO–water. The Nusselt number increases as the volume fraction increases but it decreases as the diameter of the nanoparticles of nanofluids increases. The Nusselt number increaseswith the decrease of rotational angle and inclination angle from 30° to 60° and with the increase of aspect ratio. The results of flow direction show that the aiding flow gives higher Nusselt number than the opposing flow.
Publication Date
12/8/2016
Publisher
دار نشر السفير العالميه
Volume No
77
Issue No
1
ISSN/ISBN
0735-1933
DOI
10.1016/j.icheatmasstransfer.2016.08.010
Pages
195–205
File Link
تحميل (81 مرات التحميل)
Keywords
mixed convection
رجوع