عنوان المقالة:Electrochemical synthesis of ammonia from N2 and H2O based on (Li,Na,K)2CO3–Ce0.8Gd0.18Ca0.02O2−δ composite electrolyte and CoFe2O4 cathode Electrochemical synthesis of ammonia from N2 and H2O based on (Li,Na,K)2CO3–Ce0.8Gd0.18Ca0.02O2−δ composite electrolyte and CoFe2O4 cathode
إبراهيم علي أحمد عمار | Ibrahim Ali Ahmed Amar | 15021
Publication Type
Journal
Arabic Authors
Ibrahim A.Amar, Christophe T.G.Petit, Gregory Mann, Rong Lan, Peter J.Skabara, Shanwen Tao
English Authors
Ibrahim A.Amar, Christophe T.G.Petit, Gregory Mann, Rong Lan, Peter J.Skabara, Shanwen Tao
Abstract
Electrochemical synthesis of ammonia from water vapour and nitrogen was investigated using an electrolytic cell based on CoFe2O4–Ce0.8Gd0.18Ca0.02O2−δ (CFO-CGDC), CGDC-ternary carbonate composite and Sm0.5Sr0.5CoO3−δ–Ce0.8Gd0.18Ca0.02O2−δ (SSCo-CGDC) as cathode, electrolyte and anode respectively. CoFe2O4, CGDC and SCCo were prepared via a combined EDTA-citrate complexing sol–gel and characterised by X-ray diffraction (XRD). The AC ionic conductivities of the CGDC-carbonate composite were investigated under three different atmospheres (air, dry O2 and wet 5% H2–Ar). A tri-layer electrolytic cell was fabricated by a cost-effective one-step dry-pressing and co-firing process. Ammonia was successfully synthesised from water vapour and nitrogen under atmospheric pressure and the maximum rate of ammonia production was found to be 6.5 × 10−11 mol s−1 cm−2 at 400 °C and 1.6 V which is two orders of magnitude higher than that of previous report when ammonia was synthesised from N2 and H2O at 650 °C.
Publication Date
3/18/2014
Publisher
International Journal of Hydrogen Energy
Volume No
39
Issue No
ISSN/ISBN
0360-3199
DOI
doi.org/10.1016/j.ijhydene.2013.12.177
Pages
4322-4330
External Link
https://www.sciencedirect.com/science/article/abs/pii/S0360319913031698
Keywords
Electrochemical synthesis of ammonia, Water, Nitrogen, Spinels, Co-doped ceria-carbonate composite electrolyte
رجوع