عنوان المقالة: K-means algorithm with a novel distance measure
شادي إبراهيم أبوضلفة | Shadi Abudalfa | 5632
Publication Type
Journal
Arabic Authors
English Authors
Shadi I. ABUDALFA, Mohammad MIKKI
Abstract
In this paper, we describe an essential problem in data clustering and present some solutions for it. We investigated using distance measures other than Euclidean type for improving the performance of clustering. We also developed an improved point symmetry-based distance measure and proved its efficiency. We developed a k-means algorithm with a novel distance measure that improves the performance of the classical k-means algorithm. The proposed algorithm does not have the worst-case bound on running time that exists in many similar algorithms in the literature. Experimental results shown in this paper demonstrate the effectiveness of the proposed algorithm. We compared the proposed algorithm with the classical k-means algorithm. We presented the proposed algorithm and their performance results in detail along with avenues of future research.
Publication Date
10/2/2013
Publisher
Turkish Journal of Electrical Engineering & Computer Sciences
Volume No
21
Issue No
6
DOI
10.3906/elk-1010-869
Pages
1665-1684
File Link
تحميل (161 مرات التحميل)
External Link
https://journals.tubitak.gov.tr/elektrik/issues/elk-13-21-6/elk-21-6-12-1010-869.pdf
Keywords
Data clustering, distance measure, point symmetry, kd-tree, k-means
رجوع