عنوان المقالة:Ammonia Synthesis From Water and Nitrogen Using Lanthanum-Doped Strontium Titanate/Gadolinium And Calcium Co-Doped Ceria Composite-Based Electrocatalyst Ammonia Synthesis From Water and Nitrogen Using Lanthanum-Doped Strontium Titanate/Gadolinium And Calcium Co-Doped Ceria Composite-Based Electrocatalyst
إبراهيم علي أحمد عمار | Ibrahim Ali Ahmed Amar | 15074
- Publication Type
- Journal
- Arabic Authors
- ابراهيم علي عمار
- English Authors
- Ibrahim A. Amar
- Abstract
- Electrochemical synthesis of carbon-free ammonia from H2O and N2 is a promising technology for reducing global CO2 emissions from the Haber-Bosch process (industrial ammonia production process). This study aims to explore the electrocatalyst activity of non-noble metal perovskite-based catalyst (La0.3Sr0.7TiO3-Ce0.8Gd0.18Ca0.02O2-δ, LST-CGDC) for ammonia synthesis from wet nitrogen (3% H2O). LST was prepared via a sol-gel process and characterized using X-ray diffraction (XRD). Ammonia was successfully synthesized in a double-chamber reactor, with a maximum ammonia formation rate of about 7 × 10-11 mol s-1 cm-2 and Faradaic efficiency of 0.2% at 400 °C and 1.4 V. The results demonstrated that direct ammonia synthesis from water and nitrogen is a promising green and sustainable ammonia synthesis technology.
- Abstract
- Electrochemical synthesis of carbon-free ammonia from H2O and N2 is a promising technology for reducing global CO2 emissions from the Haber-Bosch process (industrial ammonia production process). This study aims to explore the electrocatalyst activity of non-noble metal perovskite-based catalyst (La0.3Sr0.7TiO3-Ce0.8Gd0.18Ca0.02O2-δ, LST-CGDC) for ammonia synthesis from wet nitrogen (3% H2O). LST was prepared via a sol-gel process and characterized using X-ray diffraction (XRD). Ammonia was successfully synthesized in a double-chamber reactor, with a maximum ammonia formation rate of about 7 × 10-11 mol s-1 cm-2 and Faradaic efficiency of 0.2% at 400 °C and 1.4 V. The results demonstrated that direct ammonia synthesis from water and nitrogen is a promising green and sustainable ammonia synthesis technology.
- Publication Date
- 1/7/2023
- Publisher
- Biointerface Research in Applied Chemistry
- Volume No
- 13
- Issue No
- 5
- ISSN/ISBN
- 2069-5837
- DOI
- 10.33263/BRIAC135.402
- Pages
- 402
- File Link
- تحميل (0 مرات التحميل)
- External Link
- https://biointerfaceresearch.com/?page_id=11224
- Keywords
- Ammonia electrosynthesis; water; nitrogen; lanthanum-doped strontium titanate; redox stable perovskite oxide; carbon-fee synthesis; composite cathodes