عنوان المقالة: A Survey on Deep Learning-Based 2D Human Pose Estimation Models
حسين عبد الكريم يونس | hussain A.younis | 6081
Publication Type
Journal
Arabic Authors
حسين أ. يونس ساني ساليسو، أ. س. أ. محمد، م. ح. جعفر، عينون س. ب. باوزي
English Authors
Hussain A. Younis Sani Salisu, A. S. A. Mohamed, M. H. Jaafar, Ainun S. B. Pauzi
Abstract
In this article, a comprehensive survey of deep learning-based (DL-based) human pose estimation (HPE) that can help researchers in the domain of computer vision is presented. HPE is among the fastest-growing research domains of computer vision and is used in solving several problems for human endeavours. After the detailed introduction, three different human body modes followed by the main stages of HPE and two pipelines of twodimensional (2D) HPE are presented. The details of the four components of HPE are also presented. The keypoints output format of two popular 2D HPE datasets and the most cited DL-based HPE articles from the year of breakthrough are both shown in tabular form. This study intends to highlight the limitations of published reviews and surveys respecting presenting a systematic review of the current DL-based solution to the 2D HPE model. Furthermore, a detailed and meaningful survey that will guide new and existing researchers on DL-based 2D HPE models is achieved. Finally, some future research directions in the field of HPE, such as limited data on disabled persons and multi-training DL-based models, are revealed to encourage researchers and promote the growth of HPE research.
Publication Date
8/30/0023
Publisher
Computers Materials & Continua
Volume No
76
Issue No
2
DOI
DOI: 10.32604/cmc.2023.035904
Pages
2386-2400
File Link
تحميل (0 مرات التحميل)
External Link
https://cdn.techscience.cn/files/cmc/2023/TSP_CMC-76-2/TSP_CMC_35904/TSP_CMC_35904.pdf
Keywords
Human pose estimation; deep learning; 2D; dataset; models; body parts
رجوع