عنوان المقالة:Acceleration of the RSA Processes based on Parallel Decomposition and Chinese Reminder Theorem Acceleration of the RSA Processes based on Parallel Decomposition and Chinese Reminder Theorem
ا.د. محمد عصام يونس | Mohammed I. Younis | 14062
نوع النشر
مجلة علمية
المؤلفون بالعربي
محمد عصام يونس , هبة فاضل محمد . زينب تاظم جواد
المؤلفون بالإنجليزي
Mohammed I. Younis,Heba Fadhill,Zainab Nadhim Jawad
الملخص العربي
Within current advancement in computer architecture, the trends nowadays involve re-design and re-implement of algorithms to take the advantages of currently available hardware and the applicability of composition. This paper reviews the parallelizing of the RSA Algorithm and adopting the Chinese Remainder Theorem (CRT) to accelerate the decryption process. In addition, this paper proposes variant decompositions to gain extra speed up. The proposed algorithms are implemented using C# programming language. Finally, the practical results demonstrate the many cores’ GPU implementation obtained the highest speedup results for both encryption and decryption processes for variant key size and different workload; for the decryption process with CRT, it is noticed that the adopting CRT sequential version gives a speed up gains ~14X. The multi–core gains ~119X speed up; while the many core GPU gains ~433X speed. Thus, CRT gives a significant speed up for the decryption process for all three variant implementations. In addition, in both cases for Multi-cores and Many-cores, the speed up is super due to composition of parallel processing and CRT.
الملخص الانجليزي
Within current advancement in computer architecture, the trends nowadays involve re-design and re-implement of algorithms to take the advantages of currently available hardware and the applicability of composition. This paper reviews the parallelizing of the RSA Algorithm and adopting the Chinese Remainder Theorem (CRT) to accelerate the decryption process. In addition, this paper proposes variant decompositions to gain extra speed up. The proposed algorithms are implemented using C# programming language. Finally, the practical results demonstrate the many cores’ GPU implementation obtained the highest speedup results for both encryption and decryption processes for variant key size and different workload; for the decryption process with CRT, it is noticed that the adopting CRT sequential version gives a speed up gains ~14X. The multi–core gains ~119X speed up; while the many core GPU gains ~433X speed. Thus, CRT gives a significant speed up for the decryption process for all three variant implementations. In addition, in both cases for Multi-cores and Many-cores, the speed up is super due to composition of parallel processing and CRT.
تاريخ النشر
01/01/2016
الناشر
International Journal of Application or Innovation in Engineering & Management (IJAIEM)
رقم المجلد
5
رقم العدد
1
ISSN/ISBN
2319-4847
الصفحات
12-23
رابط الملف
تحميل (491 مرات التحميل)
رابط خارجي
http://www.ijaiem.org/Volume5Issue1/IJAIEM-2015-12-24-49.pdf
الكلمات المفتاحية
RSA, GPU, CRT , DLP , TLP
رجوع