سجل مجانا في منصة اريد
معرف أريد : arid.my/0001-8121
الإسم العربي : د. حامد جدوع عباس
الإسم الإنجليزي : Dr. hamed Jadooa Abbas
أسماء أخرى :
عدد الزوار : 2315
الدولة : العراق
المدينة : أخرى
الجامعة : أخرى
الكلية : أخرى

تحميل Dr. hamed Jadooa Abbas
ملخص الدكتور حامد جدوع عباس مواليد 1971 محافظة البصرة/ العراق. حاصل على شهادة الماجستير من كلية الطب / جامعة البصرة و الدكتوراه من كلية الطب / جامعة الكوفة في اختصاص الكيمياء الحياتية السريرية. اعمل كاخصائي في مختبر الكيمياء السريرية في وزارة الصحة / دائرة صحة البصرة / مستشفى الفيحاء العام وتدريسي في كلية مزايا الجامعة / وزارة التعليم العالي والبحث العلمي. وكذلك تدريسي في دورة المختبرات الاساسية الطبية في وزارة الصحة للصيادلة والعلوم والتي مدتها عام كامل. محاضر في العديد من الدورات التطويرية وورش العمل الطبية. نشرت عدة بحوث بمجلات داخل العراق وبمجلات عالمية خارج العراق بالاضافة للمشاركة بالمؤتمرات العملية المحلية والعالمية.

المؤهلات الأكاديمية

الدرجة الأكاديمية التخصص الشهادة بالعربي الشهادة بالإنجليزي قيد الدراسة من تاريخ إلى تاريخ
Degree بكالوريوس الطب وعلوم الصحة دكتوراه بالكيمياء الحياتية السريرية 01/01/2016 01/01/2016
Master ماجستير الطب وعلوم الصحة ماجستير في الكيمياء الحياتية السريرية 01/01/2010 01/01/2010

النشر العلمي

نوع النشر العنوان العربي المؤلفون بالعربي تاريخ النشر الناشر رابط الملف
مجلة علمية ASSOCIATION OF ADIPONECTIN LEVELS IN IRAQI PATIENTS WITH TYPE 2 DIABETIC AND PREDICTION OF CARDIOVASCULAR COMPLICATIONS HAMED JADOOA ABBAS, JAWAD MOHAMMAD ISMAIL 31/12/2016 International Journal of Diabetes & Research (TJPRC:IJDR)
مجلة علمية Study of Adiponectin and Lipid Profile Levels in Normotensive and Hypertensive Type 2 Diabetic Patients Hamed Jadooa 12/12/2016 Donnish Journal of Medicine and Medical Sciences تحميل
مجلة علمية ASSOCIATION OF METHYLENETETRAHYDRO FOLATEREDUCTASE GENEPOLYMORPHISMS (C677TRS1801133ANDA1298C RS1801131) WITH BREAST CANCERIN IRAQIPATEINTS ABDUL HUSSIEN A. ALGENABIL, HAMED JADOOA ABBAS, TALIBHUSSIEN KAMONA 15/11/2015 International Journal of Research in Applied Natural, تحميل
مجلة علمية Association of Estrogen-metabolizing Gene polymorphisms CYP 1A1 MspI (rs 4646903) and CYP C17 (rs 11191548) with breast cancer in Iraqi patients Abdul Hussein A. Algenabi, Hamed Jadoa Abbas, Talib Hussein Kamona 30/11/2012 Journal of Chemical, Biological and Physical Sciences تحميل
مجلة علمية Changes of Serum bile acids in liver diseases Yasin Ahmed baker, hamed Jadooa Abbas 23/12/2010 The Medical Journal Of Basrah University تحميل
مجلة علمية الفعالية التضادية للسولاسودين المعزول من نبات Solanum Nigrum ( ضد العزلات الجرثومية المعزولة من الجروح Mehammed A, Hamed Jadoa, Amani Al-Mothafer 22/12/2010 Basrah Journal Of Veterinary Research

النشاطات الأكاديمية

نوع النشاط العنوان العربي العنوان الإنجليزي - إختياري الوصف العربي الوصف الإنجليزي - إختياري تاريخ النشاط علاقتك بالنشاط اللغة المستخدمة الدولة
حضور دورة استخدام تقنيات الفلوسايتومتري في البحوث والتجارب المختبرية ( using flow cytometry techniques in research and laborarory experiments ) 01/10/2017 عضو في مجموعة اللغة الإنجليزية العراق
أخرى Association of adiponectin levels in Iraqi patients with type 2 diabetic patients and Prediction of cardiovascular complications 31/12/2016 عضو في مجموعة اللغة الإنجليزية العراق
أخرى Study of Adiponectin and Lipid Profile Levels in Normotensive and Hypertensive Type 2 Diabetic Patients Normotensive and Hypertensive Type 2 Diabetic Patients 31/12/2016 بمفردي اللغة الإنجليزية العراق
مشاركة في مؤتمر المؤتمر الدولي للواثة والبيئة 23/12/2016 عضو في مجموعة اللغة الإنجليزية مصر
أخرى Association of Methelene tetra hydro folate Reductase Gene Polymorphism (C677T rs1801133 AND A1298C rs1801131) with Breast Cancer in Iraqi Patients 15/11/2016 عضو في مجموعة اللغة الإنجليزية العراق
مشاركة في مؤتمر المؤالمؤتمركربلاء الدولي الدولي للعلوم الطبية الاساسية 12/07/2016 بمفردي اللغة الإنجليزية العراق
مشاركة في مؤتمر المؤتمر الاسترالي/ اطروحتك في ثلاث دقائق لطلبة الدكتوراه 06/07/2016 بمفردي اللغة الإنجليزية العراق
أخرى Association of Estrogen-metabolizing Gene polymorphisms CYP 1A1 MspI (rs 4646903) and CYP C17 (rs 11191548) with breast cancer in Iraqi patients 30/11/2012 عضو في مجموعة اللغة الإنجليزية العراق
أخرى الفعالية التضادية للسولاسودين المعزول من نبات ( Solanum Nigrum) ضد العزلات الجرثومية المعزولة من الجروح 23/12/2010 عضو في مجموعة اللغة الإنجليزية العراق
أخرى Changes of Serum bile acids in liver diseases 23/12/2010 عضو في مجموعة اللغة الإنجليزية العراق

المشاريع العلمية

اسم المشروع بالعربي الوصف العربي التفاصيل بالعربي الدولة من تاريخ إلى تاريخ
Changes of Serum bile acids in liver diseases The present study was carried out to evaluate the clinical usefulness of measuring total serum bile أخرى 01/01/2018 01/01/2018
الفعالية التضادية للسولاسودين المعزول من نبات( Solanum Nigrum) ضد العزلات الجرثومية المعزولة من الج أخرى 01/01/2018 01/01/2018
Association of Methelene tetra hydro folate Reductase Gene Polymorphism ABSTRACT Background Methylenetetrahydrofolatereductase (MTHFR) is a critical enzyme in folate meta www.Impact Factor(JCC): 1.8207- This article can be downloaded from impactjournals.us IMPACT: International Journal of Research in Applied, Natural and Social Sciences (IMPACT: IJRANSS) ISSN(E): 2321-8851; ISSN(P): 2347-4580 Vol. 3, Issue 11, Nov 2015, 83-94 © Impact Journals ASSOCIATION OF METHYLENETETRAHYDR OF OLATEREDUCTASE GENEPOLYMORPHISMS (C677TRS1801133ANDA1298C RS1801131) WITH BREAST CANCERIN IRAQIPATEINTS ABDUL HUSSIEN A. ALGENABIL, HAMED JADOOA ABBAS& TALIBHUSSIEN KAMONA Department of Biochemistry, Department of Oncology, Faculty of Medicine, University of Kufa, Iraq ABSTRACT Background Methylenetetrahydrofolatereductase (MTHFR) is a critical enzyme in folate metabolism. Folate plays an important role in DNA methylation, synthesis and repair.The folate-metabolizing enzymeispolymorphic at nucleotides 677(C→T) and 1298(A→C), resulting in allozymes with decreased activity.Thus, polymorphisms might influence genetic susceptibility to breast cancer. Aim To study the association of MTHFR (C677Tand A1298C) gene polymorphisms with breast cancer in Iraqi women. Methods Case-control study consisted of 300 breast cancer patients and 170 healthy control. DNA was extracted from whole blood and genotyping was achieved with specific primers to amplify fragments for digestion with restriction enzymes (polymerase chain reaction– restriction fragment length polymorphism (PCR-RFLP)). Followed by electrophoresis on agarose geland UV visualization Results The homozygous genotype (TT) of MTHFR C677T in codominant was significantly increased the risk of breast cancer 4.54 folds with respect to those of the wild type (CC). The homozygous genotype (CC) of MTHFR A1298C in codominant was significantly increased the risk of breast cancer 3.05 folds with respect to those of the wild type (AA). Conclusions MTHFR (C677T, A1298C) gene polymorphisms were associated with breast cancer in Iraqi women. KEYWORDS: MTHFR (C677T and A1298C), Gene Polymorphisms, Breast Cancer INTRODUCTION In Iraq, breast cancer is the commonest type of female malignancy, accounting for approximately one-third of the registered female cancers according to the Iraqi national cancer research center 2014(1).The enzyme which is encoded by MTHFR gene catalyzes the conversion of 5, 10-methylenetetrahydrofolate to 5- methyltetrahydrofolate, which is a co أخرى 01/01/2018 01/01/2018
Association of Estrogen-metabolizing Gene Abstract: Estrogen has been proposed to trigger breast cancer development. Increase or prolong expo JCBPS; Section B; November 2015 – January 2016, Vol. 6, No. 1; 147-158. E- ISSN: 2249 –1929 Journal of Chemical, Biological and Physical Sciences An International Peer Review E-3 Journal of Sciences Available online atwww.jcbsc.org Section B: Biological Sciences CODEN (USA): JCBPAT Research Article 147 J. Chem. Bio. Phy. Sci. Sec. B, November 2015 – January 2016; Vol.6 No.1; 147-158 Association of Estrogen-metabolizing Gene polymorphisms CYP 1A1 MspI (rs 4646903) and CYP C17 (rs 11191548) with breast cancer in Iraqi patients Abdul Hussein A. Algenabi1, Hamed Jadoa Abbas2 & Talib Hussein Kamona3 1, 2Department of Biochemistry,University of Kufa, Iraq 3Department of oncology, Faculty of Medicine, University of Kufa, Iraq Received: 21 November 2015; Revised: 07 December 2015; Accepted: 11 December2015 Abstract: Estrogen has been proposed to trigger breast cancer development. Increase or prolong exposure to estrogen can damage the DNA molecule and increase the genomic instability process in breast tissue. To examine this hypothesis, case-control study was conducted to determine whether polymorphisms of the genes responsible for estrogen biosynthesis (CYP17) and hydroxylation (CYP1A1) are associated with an elevated risk for breast cancer in Iraqi women. Three hundred breast cancer women and 170 healthy controls were recruited. Polymerase chain reaction– restriction fragment length polymorphism (PCR- RFLP) assays were used to determine the genotypes of estrogenmetabolizing genes. The homozygous mutant genotypes (vtvt) of CYP 1A1 in codominant was significantly increased the risk of breast cancer to 3.34 folds with respect to those of the wild type (wtwt). The homozygous mutant genotype (A2A2) of CYP 17 in codominant was significantly increased the risk of breast cancer 3.86 folds with respect to those of the wild type (A1A1). The findings of this study revealed that CYP1A1 and CYP17 genes polymorphisms were associated with breast cancer in Iraqi women. Keywords: CYP1A1, CYP17, Gene polymorphisms, Breast Cancer. Association… Abdul Hussein et al. 148 J. Chem. Bio. Phy. Sci. Sec. B, November 2015 – January 2016; Vol.6 No.1; 147-158. INTRODUCTION In Iraq, breast cancer is the commonest type of female malignancy, accounting for approximately one-third of the registered female cancers according to the Iraqi national cancer research center, 2014 1. Cytochrome P450 1A1 (CYP1A1) is a member of the cytochrome P450 1 family and plays a key role in the metabolism of drugs and environmental chemicals. The human CYP1A1 enzyme is the most active among the CYPs in metabolizing pro-carcinogens, particularly the polycyclic aromatic hydrocarbons, into highly reactive intermediates. CYP1A1 also is among the major enzymes participating in estrogen hydroxylation and thus may play an important role in determining the relative distribution of the metabolites. When these compounds bind to DNA and form adducts, they may contribute to carcinogenesis 2. The common Functional polymorphism in the CYP1A1 gene have been recently studied: a thymine (T) to cytosine (C) transition in the noncoding 3´ -flanking region. These variations could alter CYP1A1 expression and function, potentially influencing the balance between metabolic activation and detoxification of toxicants, and ultimately leading to individual susceptibilities to cancer 3. The Cytochrome P450 17 (CYP17) gene is coded for the enzyme cytochrome P450c17 which catalyzes the 17α-hydroxylation of pregnenolone and progesterone as well as conversion of C21 steroids to C17. The 5´ region, untranslated from CYP17, becomes polymorphic with the substitution of thymine for cytocine, creating an MspI restriction site. The polymorphism increases CYP17 expression which boosting estradiol biosynthesis4. PATIENTS AND METHODS Subjects: Three hundred female patients with primary breast carcinoma were included in this study; their mean age was 49.26 ± 9.86 years, who attended the tumors center at Al-Sader teaching medical city, AL Najaf, Iraq. The control group included 170 healthy females, randomly selected, their ages was 48.92 ± 12.82 years. DNA extraction and PCR amplifications: Whole blood was collected into EDTA-coated tubes. Genomic DNA was extracted from Whole blood using a ReliaPrep™ Blood gDNA Miniprep System (Promega, USA). CYP1A1 and CYP17 mutations were detected after PCR amplification with corresponding primers. The primers for CYP1A1 gene polymorphism were 5′-TAG GAG TCT TGT CTC ATG CCT-3′ and 5′-CAG TGA AGA GGT GTA GCC GCT-3′. The primers for CYP17 gene polymorphism were 5′-CAT TCG CAC TCT GGA GTC-3′and 5′-AGG CTC TTG GGG TAC TTG-3′. Data analysis: Unconditional logistic regressions were used to estimate the odd ratios (ORs) and their 95% confidence intervals. Genotype frequencies of polymorphisms were consistent with Hardy–Weinberg equilibrium. RESULTS AND DISCUSSION The baseline characteristics of cases and controls are summarized in table 1. Association… Abdul Hussein et al. 149 J. Chem. Bio. Phy. Sci. Sec. B, November 2015 – January 2016; Vol.6 No.1; 147-158. Table 1: Comparison of cases and controls by selected characteristics Parameters Control subjects (No.= 170) Patient subjects (No.= 300) P value Age (years) 48.92 ± 12.82 49.26 ± 9.86 0.67 BMI (kg/m2) 27.91 ± 3.39 29.75 ± 4.32 0.000 Residency Urban 120 (70.5%) 198 (66%) 0.3 Rural 50 (29.5%) 102 (34%) Menopausal status Premenopausal 91(39.34±7.68) 158 (41.77±5.53) 0.85 Postmenopausal 79 (59.87±7.81) 142 (57.59±6.28) Histologic types Ductal carcinomas 261 (87 %) Lobular carcinomas 39 (13 %) P-value < 0.05 is significant. RFLP analysis of CYP1A1 MspI gene polymorphism: The digestion of PCR product of CYP1A1 gene polymorphism by MspI is shown in figure 1. Figure 1: Gel electrophoresis of CYP 1A1 digestion using MspI restriction enzyme on a 3% agarose gel (75 V for 2 hrs.). Line1: DNA ladder (100 -1500 bp); Lines 4, 5, 6,7,10 and 11 for wild type wtwt (340 bp); Lanes 2, 3 and 8: for heterozygous wtvt genotype (340, 200 and 140 bp); Lane 9: for vtvt homozygous genotype (200 and140 bp). RFLP analysis of CYP 17 (Cytochrome P450c17a, rs 11191548) gene polymorphism: The digestion of PCR product of CYP17 gene polymorphism by MspA1I was shown in figure 2. Figure 2: CYP17 gene polymorphism restriction digestion gel electrophoresis. The PCR products were digested with restriction enzyme MspA1I. Line 1: Ladder 100 bp; Line 4 for A2A2 homozygous genotype (290 and 124 bp); 2, 3, 7, 9 and 10 bands for A1/A2 heterozygote genotype (414, 290 and 124 bp); 5, 6, 8 and 11 for A1/A1 wild genotype (414 bp). Association… Abdul Hussein et al. 150 J. Chem. Bio. Phy. Sci. Sec. B, November 2015 – January 2016; Vol.6 No.1; 147-158. Genotypes of genes polymorphisms distributions according to estrogen and Progesterone receptors: Because of the important role of CYP17 in estrogen biosynthesis, the study is determined the association of CYP17 genotypes with estrogen receptor status. There were no significant differences observed between positive estrogen receptor and negative estrogen receptor status according to CYP 17 gene polymorphism (P < 0.05), table 2. Many sex hormones including estrogen have been accused to take part in breast cancer development and in the breast carcinogenesis5. The data revealed that presence of hormone receptor expression in the majority and cancer showing positive receptors has better prognosis and better response to hormonal therapy than those with no receptors. These results agree with that mentioned by Joensuu et al6. Table 2: Distribution gene polymorphisms genotypes in cancer patients according to estrogen and Progesterone receptors Genotypes Estrogen Receptor status Progesterone Receptor status Positive (217) No. / % Negative (83) No. / % P value Positive (187) No. / % Positive (113) No. / % P value CYP 1A1 Wt Wt 109 (36.3%) 26 (98.7%) 0.004 90 (30%) 45 (15%) Wtvt 87 (29%) 40 (13.3%) 80 (26.7%) 47 (15.7%) 0.047 vtvt 21 (7%) 17 (5.7%) 17 (5.7%) 21 (7%) CYP 17 A1A1 94 (31.3%) 24 (8%) 0.067 77 (25.7%) 41 (13.7%) A1A2 103 (34.3%) 48 (16%) 93 (31%) 58 (19.3%) 0.54 A2A2 20 (6.7%) 11 (3.7%) 17 (5.7%) 14 (4.7%) Distributions of genotypes of breast cancer patients according to body mass index (BMI): Patients were classified according to WHO classification of obesity. The findings revealed significant difference between patient groups and the highest frequencies were in obese group, table 3. The increased risk among overweight or obese women is thought to be due to the higher levels of circulating estrogen that arise from aromatization of the androgen precursor androstenedione to estrone in adipose tissue, and this becomes the main source of endogenous estrogens especially after menopause. Obesity is also associated with lower levels of sex hormone binding globulins, which increases bioavailable estradiol in postmenopausal obese women Smith- Warner et al.,(7). This finding agreed with Surekha D et al (8). Table 3: Genotypes of breast cancer patients distributed by body mass index (BMI) Genotypes BMI 18.5 -25 (Kg/ m2) No. / % BMI 25 -30 (Kg/ m2) No. / % BMI ≥30 (Kg/m2 ) No. / % P value CYP 1A1 WtWt 29 (9.7%) 32 (10.7 %) 74 (24.7%) Wtvt 14 (4.7%) 50 (16.7 %) 63 (21 %) 0.000 vtvt 3 (1 %) 22 (7.3 %) 13 (4.3 %) CYP 17 A1A1 26 (8.7 %) 27 (9 %) 65 (21.7 %) A1A2 18 (6 %) 58 (19.3 %) 75 (25 %) 0.000 A2A2 2 (0.7 %) 19 (6.3 %) 10 (3.3 %) Association… Abdul Hussein et al. 151 J. Chem. Bio. Phy. Sci. Sec. B, November 2015 – January 2016; Vol.6 No.1; 147-158. Distributions of genotypes of breast cancer patients according to Family History of breast cancer: The results shown statistically significant difference of mutant alleles of gene polymorphisms CYP 1A1 and CYP 17 between positive and negative family history of breast cancer (P < 0.05). First-degree family history of breast cancer was associated with an increased risk of breast cancer to 2.59 for CYP 1A1 and 2.87 for CYP 17, table 4. Studying family history of breast cancer can highlight the genetic predisposition to develop the disease, and in this regard, the results clearly established for women who have breast cancer in their families. In agreement with the previous studies on CYP1A19 and CYP17 8, 10 polymorphisms and breast cancer risk. Table 4: Associations between genotypes and breast cancer patients according to Family history of breast cancer. Genotypes Negative Family history (263) No. / % Positive Family history (37) No. / % OR (95% CI) P value CYP 1A1 WtWt 828(42.7 %) 7(2.3 %) 0.24 (0.10- 0.58) 0.0014 Wtvt 806)% 3553( 28)% 7( 1.94 (0.96- 3.89) 0.061 vtvt 29(9.7 %) 9(3 %) 2.59 (1.11- 6.03) 0.026 CYP 17 A1A1 886(38.7 %) 2(0.7 %) 0.07 (0.01- 0.30) 0.0004 A1A2 824(41.3 %) 27(9 %) 3.02 (1.40- 6.50) 0.0045 A2A2 23(7.7%) 8(2.7%) 2.87 (1.17-7.02) 0.02 Distributions of genotypes of breast cancer patients according to menopausal status: Higher frequency of homozygotes was observed among premenopausal breast cancer patients as compared to postmenopausal patients, table 5. In agreement with the previous study on A2 of CYP17 frequency that showed increasing but non-significant trend in premenopausal breast cancer women when compared to postmenopausal cases. Table 5: Associations between genotypes of patients according to menopausal status The A2 mutant allele has been associated with increased levels of serum estradiol and progesterone levels in premenopausal women. While, among postmenopausal women, estrogens are derived primarily from aromatization in the adipose tissue since high estradiol, estrone and androgen has Genotypes Premenopausal (158) % No. / Postmenopausal (142) No. / % OR (95% CI) P value CYP 1A1 WtWt 74 (24.7 %) 61 (20.3 %) 0.85 (0.54- 1.34) 0.5004 Wtvt 61 (20.3 %) 66 (22 %) 1.38 (0.87- 2.18) 0.168 vtvt 23 (7.7 %) 15 (5 %) 0.69 (0.34- 1.38) 0.30 CYP 17 A1A1 66 (22 %) 52 (17.3 %) 0.80 (0.50- 1.28) 0.36 A1A2 75 (25 %) 76 (25.3 %) 1.27 (0.8- 2) 0.29 A2A2 17 (5.7 %) 14 (4.7 %) 0.9 (0.42- 1.91) 0.79 Association… Abdul Hussein et al. 152 J. Chem. Bio. Phy. Sci. Sec. B, November 2015 – January 2016; Vol.6 No.1; 147-158. been observed among postmenopausal women with the A2 allele8, 11. Higher frequency of homozygote genotypes of CYP1A1 and CYP17 was observed among premenopausal breast cancer patients, suggesting that the presence of homozygote genotypes might influence the early onset of breast cancer. The study from Indian population had also reported significant association of mutant allele A2 of CYP17 with breast cancer in young women, Chakraborty et al.12. The association between gene polymorphisms and grades of breast cancer: The patients are classified according to Scarff- Bloom- Richardson classification. The highest frequency of patients was evident in those with grade II and III of breast cancer; this explains the occurrence of advance stage during diagnosis. According to grades of breast cancer, there were highly significant difference between gene polymorphisms and grades of breast cancer, table 6. It has been found that mutant alleles CYP1A1 vtvt and CYP17 A2A2 were more frequently associated with poorly differentiated cancer as compared to well differentiated grade. These results may explain the aggressiveness of breast cancer tumours when they were developed due to gene polymorphisms and might reflect the fact that grade II and III in general carry a bad prognosis. This suggests that this gene polymorphisms are a predisposing genetic factor implicated in the carcinogenesis of breast cancer. Table 6: Relationship between genotypes and grades of tumor in breast cancer patients Genotypes Grades P Grade I (28) Grade II (154) Grade III (118) Value CYP 1A1 Wt Wt (5.3 %)86 (24.3 %)73 (15.3 %)46 Wt vt (3.7 %)88 (23.7 %)78 (15 %)45 0.001 vt vt (0.3 %)8 (3.3 %)80 (9 %)27 CYP 17 A1A1 (6 %)88 (21 %)63 (12.3 %)37 A1A2 7 (2.3 %) 83 (27.7 %) 61 (20.3 %) 0.001 A2A2 (1 %)3 (2.7 %)8 (6.7 %)20 The association of gene polymorphisms with the tumor size of the breast cancer patients: It has been suggested that tumor size is crucial for breast cancer staging to determine the invasiveness of tumor, and it is one of the most important prognostic factors in breast cancer. It has been used in the determination of Nottingham Prognostic Index, cited as a predictor of axillary metastasis, and disease-free survival in lymph node-negative patients has been found to be better in patients when tumors are smaller than one centimeter Colleoni et al.13. Accordingly, more than 88% of the present patients were at a greater risk of metastasis, as their tumor size exceeded two centimeters, table 7. The findings are identical with those of Iraqi14.In contrast, in a study from a western country, the tumors are predominantly15 less than 2cm. This could be due to the early prevention, screening and detection programs prevalent in the western countries and high rate of malignant breast tumors in Iraq. Association… Abdul Hussein et al. 153 J. Chem. Bio. Phy. Sci. Sec. B, November 2015 – January 2016; Vol.6 No.1; 147-158. Table 7: The association of gene polymorphisms with the tumor size of the breast cancer patients Genotypes Tumor Size P T1 (34) T2 (158) T3 (75) T4 (33) Value CYP 1A1 A1A1 16 (5.3%) 86 (28.7 %) 20 (6.7 %) 13 (4.3 %) A1A2 17 (5.7 %) 66 (22 %) 29 (9.7%) 15 (5%) 0.000 A2A2 1 (0.3 %) 6 (2 %) 26 (8.7 %) 5 (1.7 %) CYP 17 WtWt 16 (5.3 %) 75 (25 %) 15 (5 %) 12 (4 %) Wt vt 15 (5 %) 76 (25.3 %) 47 (15.7 %) 13 (4.3 %) 0.000 vt vt 3 (1 %) 7 (2.3 %) 13 (4.3 %) 8 (2.7 %) T2 Tumor ≤ 2 cm, T2 Tumor > 2 cm but ≤ 5 cm, T3 Tumor > 5 cm, T4 Tumor of any size with direct extension to the chest wall and/or to the skin. Distribution of gene polymorphisms of patients according to lymph node status: Regional lymph node status is the most important predictor of disease-free and overall survival in patients with breast cancer. High positive lymph node results were seen in this study (68%). In developed countries, majority of the patients the lymph nodes were not involved16, this also due to the early detection programs prevalent in the western countries and high rate of malignant breast tumors in Iraq. The statistical analysis revealed highly significant differences of gene polymorphisms of breast cancer patients and lymph node status. The frequency of A2 genotype was increased in patients with positive node status 25 (8.3 %). This results was similar with study8 on CYP17, table 8. Table 8: Distribution of gene polymorphisms of patients according to lymph node status Genotypes Negative (96) No. / % Positive (204) No. / % P Value CYP 1A1 wt wt 56 (18.7 %) 79 (26.3 %) 0.000 wt vt 39 (13 %) 88 (29.3 %) vt vt 1 (0.3 %) 37 (12.3 %) CYP 17 A1A1 51 (17 %) 67 (22.3 %) 0.003 A1A1 51 (17 %) 67 (22.3 %) A2A2 6 (2 %) 25 (8.3 %) Distribution of gene polymorphisms of patients according to metastasis of breast cancer: The results showed statistically highly significant difference of gene polymorphisms between metastatic and non-metastatic of breast cancer (P < 0.05). The present frequency of 20.7 % distance metastasis, table 9. Results could be explained through the time of cancer is detected. Table 9: The association between gene polymorphisms and metastasis of breast cancer Genotypes Non-metastatic (238) No. / % Metastatic (62) No. / % P value CYP 1A1 WtWt 126 (42 %) 9 (3 %) Wtvt 94 (31.3 %) 33 (11 %) 0.000 vtvt 18 (6 %) 20 (6.7 %) CYP 17 A1A1 112 (37.3 %) 6 (2 %) 0.000 A1A2 108 (36 %) 43 (14.3 %) A2A2 18 (6 %) 13 (4.3 %) Association… Abdul Hussein et al. 154 J. Chem. Bio. Phy. Sci. Sec. B, November 2015 – January 2016; Vol.6 No.1; 147-158. Relationship between genotypes and clinical stages of tumor of breast cancer: Tumor-nodemetastasis (TNM) system was employed to classify the stages of patients. The statistical analysis exhibited highly significant variation of gene polymorphisms and the clinical stages, table 10. The frequency of mutant genotypes vtvt of CYP 1A1 MspI and A2A2 of CYP 17 genotypes was found to be increased in breast cancer patients with advanced stage of the disease. In agreement with studies for CYP17 (8) and CYP 1A1 (9) polymorphism and breast cancer risk. Table 10: Relationship between genotypes and clinical stages of tumor of breast cancer Genotypes Clinical stages P Value Stage I (26) Stage II (139) Stage III (76) Stage IV (59) CYP 1A1 Wt Wt 15 (5 %) 77 (25.7 %) 35 (11.7 %) 8 (2.7 %) Wt vt 10 (3.3 %) 58 (19.3 %) 28 (9.3 %) 31 (10.3 %) 0.000 vt vt 1 (0.3 %) 4 (1.3 %) 13 (4.3 %) 20 (6.7 %) CYP 17 A1A1 14 (4.7 %) 68 (22.7 %) 30 (10 %) 6 (2 %) A1A2 9 (3 %) 64 (21.3 %) 39 (13 %) 39 (13 %) 0.000 A2A2 3 (1 %) 7 (2.3 %) 7 (2.3 %) 14 (4.7 %) Association of genes polymorphisms with Types of Breast Cancer: Statistical analysis revealed significant difference of CYP 1A1 and CYP 17 gene polymorphisms on the breast cancer tumor types, table 11. This suggests that gene polymorphisms have a significant impact on the type of breast cancer tumors. Table 11: The association of CYP 1A1 and CYP 17 gene polymorphisms with types of breast cancer Tumor types CYP 1A1 CYP 17 wt wt No. /% wt vt No. /% vt vt No. /% A1A1 No. /% A1A2N o. /% A2A2N o. /% Ductal Carcinoma Insitu (10) 8 2.7 % 2 0.7 % 0 0 % 7 2.3 % 3 1 % 0 0 % Infiltrating ductal carcinoma (215) 88 29.3 % 98 30.3 % 36 12 % 76 25.3 % 885 38.3 % 24 8 % Infiltrating lobular carcinoma (39) 20 6.7 % 87 5.7 % 2 0.7 % 23 7.7 % 82 4 % 4 1.3 % Mucinous carcinoma (16) 9 3% 7 2.3 % 0 0 % 6 2 % 80 3.3 % 0 0 % Medullary carcinoma (11) 7 2.3 % 4 1.3 % 0 0 % 6 2 % 5 1.7 % 0 0 % IDC with Paget's disease (9) 3 1 % 6 2 % 0 0 % 0 0 % 6 2 % 3 1 % P. Value 0.049 0.005 Frequencies and genotypes of CYP 1A1 Gene Polymorphism: The homozygous genotype (vtvt) of CYP 1A1 in codominant was significantly (P = 0.002) increased the risk of breast cancer to 3.34 Association… Abdul Hussein et al. 155 J. Chem. Bio. Phy. Sci. Sec. B, November 2015 – January 2016; Vol.6 No.1; 147-158. (95% CI: 1.55-7.22) for unadjusted and 3.65 folds (95% CI: 1.66-8) for age and BMI adjusted odd ratio with respect to those of the wild type (wtwt). Similarly the heterozygous genotype (wtvt) significantly (P= 0.003) raised the risk of breast cancer by 1.86 folds in unadjusted and significantly (P= 0.003) raised the risk of breast cancer by 1.88 (95% CI: 1.24-2.85) folds in age and BMI adjusted odd ratio, as shown table 12. These results were consistent with those reported previously in India (17), Korea (18), Greece (19), Brazil (20), China (21), and USA (22), but inconsistent with results of previous study in Canadian population (23). Table 12: Risk of breast cancer associated with CYP 1A1 genotype according to different models of inheritance OR: odds ratio; CI: 95 % confidence intervals ; Significant differences at P< 0.05. Frequencies and genotypes of CYP 17 Gene Polymorphism: The homozygous genotype (A2A2) in codominant was significantly (P = 0.000) increased the risk of breast cancer 3.86 folds with respect to those of the wild type (A1A1). Also after adjustment for age and BMI there was significant variation was obtained (OR= 4.24, 95 % CI: 1.76-10.17). The A1A2 heterozygous genotype significantly raised the risk of breast cancer by 2.19 folds in unadjusted and significantly raised the risk of breast cancer by 2.2 (95 % CI: 1.47-3.35) folds in age and BMI adjusted odd ratio, table 13. Genetic variation of CYP17 affect androgen levels, either directly or by means of its effects on estrogen levels (24). Recent studies showed a possible protective association with the A1 allele and a risk association with the A2 allele of CYP17. In general the studies showing A2 association with breast cancer have based their explanation that additional Sp1 site created by mutation resulted in promoter hyper activation and increased transcription leading to elevated estrogen level conferring risk to breast cancer (8, 25). The most consistent association reported in a previous studies of Italian (10), Brazilian (20), Indian (26), American (27) and Polish (28) populations. The studies reported a strong association between the CYP17 polymorphism and breast cancer risk. On the other hands, some studies suggested no significant association of CYP17 MspAI with breast cancer in Turkish (25) and Austrian populations (29). Because the genotype effects have been shown to differ by race, ethnicity CYP 1A1 rs4646903 Breast cancer patients No.=300 Control No.=170 Unadjusted OR (95% CI) P value Adjusted OR (95% CI) P value Codominant wtwt (Reference) 135 107 1.00 1.00 wtvt 127 54 1.86 (1.24-2.8) 0.003 1.88 (1.24-2.85) 0.003 vtvt 38 9 3.34 (1.55-7.22) 0.002 3.65 (1.66-8) 0.001 Dominant wtvt + vtvt 165 63 2.07( 1.41- 3.05) 0.000 2.12 (1.43-3.15) 0.000 Recessive wtwt + wtvt (Reference) 247 156 1.00 1.00 vtvt 53 14 2.59 (1.22-5.5) 0.013 2.81 (1.31- 6.06) 0.008 wt 397 (66.2 %) 268 (78.8%) 1.9 (1.39- 2.59) 0.000 - vt 203 (33.8 %) 72 (21.2%) Association… Abdul Hussein et al. 156 J. Chem. Bio. Phy. Sci. Sec. B, November 2015 – January 2016; Vol.6 No.1; 147-158. and sample size, study populations are also anticipated to be a potential source of bias in the previous studies. Table 13: Risk of breast cancer associated with CYP 17 genotype according to different models of inheritance OR: odds ratio; CI: 95% confidence intervals ; Significant differences at (P< 0.05). CONCLUSION CYP1A1 and CYP17 gene polymorphisms were associated with breast cancer in Iraqi women. REFERENCE 1. S. Shiovitz, L.A. Korde, Genetics of Breast Cancer: A Topic in Evolution. Ann. Oncol. 2015. 2. D. Surekha, K. Sailaja, D. Nageswara Rao, T. Padma, D. Raghunadharaoi, S. Vishnupriya, Association of CYP1A1*2 polymorphism with Breast cancer risk: A case control study. Indian J Med Sci, Vol. 63, No. 1, January 2009. 3. W.Zhuo, L.Zhang, Z. Qiu, B. Zhu, & Z. Chen, Does cytochrome P450 1A1 MspI polymorphism increase acute lymphoblastic leukemia risk? Evidence from 2013 cases and 2903 controls. Gene 510, 14–21 (2012). 4. H.S. Feigelson, R. McKean- Cowdin, MC. Pike et al.; Cytochrome P450c 17 alpha gene (CYP17) polymorphism predicts use of hormone replacement therapy cancer Res 1999 ;59 (16):3908-10. 5. H. M. Iman, F. Hasan, A.Abdul Kareem, G. Mohammed, Immunohisto-chemical evaluation of human epidermal growth factor receptor 2 and estrogen and progesterone receptors in Iraqi breast carcinoma women. International Journal of Advanced Research, 2014, 2,168-177. CYP 17 rs11191548 Breast cancer patients No.=300 Control No.=170 Unadjusted OR (95% CI) P value Adjusted OR (95% CI) P value Codominant A1A1 (Reference) 118 103 1.00 1.00 A1A2 151 60 2.197 (1.47-3.27) 0.000 2.2 (1.47-3.35) 0.000 A2A2 31 7 3.86 (1.63-9.15) 0.002 4.24 (1.76-10.17) 0.001 Dominant A1A1+A1A2 182 67 2.37 (1.61-3.48 ) 0.000 2.43 (1.64- 3.61) 0.000 Recessive A1A1+A1A2 (Reference) 247 156 1.00 1.00 A2A2 31 7 2.68 (1.15- 6.23 ) 0 .022 2.92 (1.24- 6.86) 0.014 A1 387 (64.5%) 266(78.2%) 1.97 (1.45-2.68) 0.000 - A2 213 (35.5%) 74 (21.8%) Association… Abdul Hussein et al. 157 J. Chem. Bio. Phy. Sci. Sec. B, November 2015 – January 2016; Vol.6 No.1; 147-158. 6. K. Joensuu, M.Leidenius, M. Kero and L. C. Andersson, ER, PR, HER2, Ki-67 and K5 in Early and Late Relapsing Breast cancer— Reduced K5 Expression in Metastases. Basic and Clinical Research. 2013;7: 23- 34. 7. H.J. Baer, S.S. Tworoger, S.E. Hankinson, W.C. Willett, Body fatness at young ages and risk of breast cancer throughout life. Am. J. Epidemiol. 2010, 171: 1183- 1194. 8. D. Surekha, K. Sailaja, D. R. Nageswara, T.Padma, D.Raghunadharao, S. Vishnupriya, Association of a CYP17 Gene Polymorphism with Development of Breast Cancer in India. Asian Pacifi Journal of Cancer Prevention, Vol 11, 2010. 9. D. Surekha, K. Sailaja, D. R. Nageswara, T. Padma, D. Raghunadharao, S. Vishnupriya, Association of CYP1A1*2 Polymorphisms with breast risk: A case control study. Indian J Med Sci, Vol. 63, No. 1, 2009. 10. A. Cinzia, D. B. Chiara, L. Vienna, G. Stefania, N. T. Vincenzo, C. Lucio, B. Francesco, R. Antonio, CYP17, GSTP1, PON1 and GLO1 gene polymorphisms as risk factors for breast cancer: an Italian case-control study. BMC Cancer 2009, 9:115. 11. S.A. Smith-Warner, D. Spiegelman, J.Ritz, D. Albanes, W.L.Beeson, L.Bernstein, F.Berrino, P.A. Van den Brandt, J.E. Buring, E.Cho, Methods for pooling results of epidemiologic studies: the pooling project of prospective studies of diet and cancer. Am. J. Epidemiol., 2006; 63: 1053-1064. 12. A. Chakraborty, N.S. Murthy, C. Chintamani, et al. Cyp17 gene polymorphism and its association with high-risk north Indian breast cancer patients. Hum Gent, 2007, 52, 159-65. 13. M. Colleoni, N. Rotmensz, G.Peruzzotti, P.Maisonneuve, G.Mazzarol, G.Pruneri, A. Luini, M. Intra, P. Veronesi, V.Galimberti, R.Torrisi, A. Cardillo, A. Goldhirsch, and G. Viale, Size of breast cancer metastases in axillary lymph nodes: clinical relevance of minimal lymphnode involvement. J. Clin. Oncol., 2005;23: 1379-1389. 14. M. M. Mahmoud, Breast Cancer in Kirkuk City, Hormone Receptors Status (Estrogen and Progesterone) and Her-2/Neu and Their Correlation with Other Pathologic Prognostic Variables. Diyala Journal of Medicine, Vol. 6, 2014. 15. L.A. Stead, T.L. Lash, J.E. Sobieraj et al.; Triple-negative breast cancers are increased in black women regardless of the age or body mass index. Breast Cancer Res 2009; 11:18. 16. D. Surekha, K. Sailaja, D. Nageswara Rao, T. Padma, D. Raghunadharaoi, S. Vishnupriya, Association of CYP1A1*2 polymorphism with Breast cancer risk: A case control study. Indian J Med Sci, Vol. 63, No. 1, January 2009. 17. S. Aesun, K. Daehee, Y. C. Ji, M. L. Kyoung, K. P. Sue, Y. N. Dong, H. A. Sei, YKY Cytochrome P450 1A1 (CYP1A1) polymorphisms and breast cancer risk in Korean women. Experimental and Molecular Medicine, Vol. 39, No. 3, 361-366, 2007. 18. N. S. Theodoros, P. E. Konstantinos, Four polymorphisms in cytochrome P450 1A1 (CYP1A1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat (2010) 122:459–469. Association… Abdul Hussein et al. 158 J. Chem. Bio. Phy. Sci. Sec. B, November 2015 – January 2016; Vol.6 No.1; 147-158. 19. A. D. Raquel, C. T. Ana, B. Monica, H. A. Helio, M. Jurandyr, Variability in Estrogen Metabolizing Genes and their Association with Genomic Instability in Untreated Breast Cancer Patients and Healthy Women. Journal of Biomedicine and Biotechnology.doi:10.1155, 571784, 2011. 20. S. Miny, Y. Dhong, N. Z. An, Y. L. Hui, R. D. G. Gorka, X. L. Fen, L. Ming, Genetic Polymorphisms in Estrogen-Related Genes and the Risk of Breast Cancer among Han Chinese Women. Int. J. Mol. Sci., 16, 4121-4135, 2015. 21. D. Brenda, D. John, R. Eldon, M. Sharmila, D. S. Craig, W. P. Thomas, C. D. Daniele, A. G. Bobby, E. Ilonka, W. Emily, Polymorphisms in genes involved in sex hormone metabolism, estrogen plus progestin hormone therapy use, and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev. 2008; 17(7): 1751–1759. 22. A. M. Jillian, V. John, C. Alastair, A. Pantelis, R. G. Judith, Breast Cancer Risk, Fungicide Exposure and CYP1A1*2A Gene-Environment Interactions in a Province-Wide Case Control Study in Prince Edward Island, Canada. Int. J. Environ. Res. Public Health 2012, 9, 1846-1858. 23. L. Sharp, A.H. Cardy, S.C. Cotton and J. Little, CYP17 gene polymorphisms: prevalence and associations with hormone levels and related factors. A HUGE review. Am J Epidemiol, 2004, 160: 729-740,. 24. M.T. Bora, O. Tulin, K. Halil, I. Sennur, Z. Calay, O. Oguz, I. Turgay, CYP 17 (T-34C) and CYP 19 (Trp39Arg) Polymorphisms and their Cooperative Effects on Breast Cancer Susceptibility. In vivo 24: 71-74 (2010). 25. C. Anurupa, N. S. Murthy, C. Chintamani, D. Bhatnagar, R. S. Mohil, P. C. Sharma, S. Sunita, CYP17 gene polymorphism and its association with high-risk north Indian breast cancer patients. J Hum Genet (2007) 52:159–165. 26. E. Susan, M. Cann, B. Kirsten , J. L. Moysich, Freudenheim, B. A, Christine, G. S Peter, The Risk of Breast Cancer Associated with Dietary Lignans Differs by CYP17 Genotype in Women. J. Nutr. 132: 3036–3041, 2002. 27. S. Anna, R. Hanna, F. Tomasz, P. Ireneusz, S. Beata, The CYP17 and CYP19 gene Single Nucleotide Polymorphism in women with sporadic breast Cancer. Pol J Pathol 2009; 4: 163-167. 28. H. C. Jiun, M. G. Dorota, C. Xiaoqing, S. D. Gillian, A. J. Mark, L. M. Roger, C. S. Melissa, R. M. Margaret, G. G. Graham, C. T. Georgia, L. H. John, B. S. Amanda, CYP17 genetic polymorphism, breast cancer, and breast cancer risk factors: Australian Breast Cancer Family Study. Breast Cancer Research Vol 7 No 4, 2005. Corresponding author: Hamed Jadoa Abbas; Department of Biochemistry, University of Kufa, Iraq أخرى 01/01/2018 01/01/2018
ASSOCIATION OF ADIPONECTIN LEVELS IN IRAQI PATIENTS WITH TYPE 2 ABSTRACT Background As cardiovascular disease is the leading cause of mortality in type 2 diabetes أخرى 01/01/2018 01/01/2018
Study of Adiponectin and Lipid Profile Levels in Normotensive and Hypertensive Type 2 Diabetic Patie Background: Hypertension and type 2 diabetes mellitus (T2DM) are major health problems worldwide, as Author: Hamed Jadooa, Ph.D, Clinical Department of Biochemistry, Al-faihaa general hospital, Basrah, Iraq. Email: hamedjadoa@yahoo.com Donnish Journal of Medicine and Medical Sciences Vol 3(6) pp. 023-026 December, 2016. http://www.donnishjournals.org/djmms ISSN: 2984-8660 Copyright © 2016 Donnish Journals Original Research Article Study of Adiponectin and Lipid Profile Levels in Normotensive and Hypertensive Type 2 Diabetic Patients Hamed Jadooa, Ph.D Clinical Department of Biochemistry, Al-Faihaa General Hospital, Basrah, Iraq. Accepted 22nd November, 2016. Background: Hypertension and type 2 diabetes mellitus (T2DM) are major health problems worldwide, associated with excess morbidity and mortality. Serum adiponectin is a biomarker that is associated with type 2 diabetes and hypertension, higher levels are protective while lower circulating levels are risk factors. Objective: To evaluate the adiponectin and lipid profile levels in normotensive and hypertensive type 2 diabetic patients. Method: A case-control study of 510 participants included three groups: (150 type 2 diabetic patients without hypertension, 210 type 2 diabetic patients with hypertension and 150 healthy control). The patients were randomly selected based on World Health Organization (WHO) guideline. Results: The result revealed significant increased values of adiponectin and high-density lipoprotein (HDL) and decreased serum cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) in control group when compared with diabetic normotensive and hypertensive patients groups (p<0.05). The current study also found that the mean of serum TC, TG, LDL and VLDL were higher and decline in serum adiponectin and high-density lipoprotein in hypertensive type 2 diabetic patients compared with non-hypertensive diabetic, although these were not significant (P > 0.05). Hypertensive type 2 diabetic females and males had no significantly higher serum TC, TG, LDL and VLDL and decline in serum adiponectin and HDL when compared with non-hypertensive diabetic females and males, respectively. Conclusion: This study demonstrated that no significant differences of adiponectin and dyslipidemia in hypertensive type 2 diabetic compared with non-hypertensive type 2 diabetic patients. Keywords: Adiponectin level, lipid profile, Type-2 diabetes mellitus, Hypertension. INTRODUCTION Hypertension and diabetes mellitus are common diseases that coexist with each other and constitute the most common risk factors for coronary heart diseases (CHD) (1-3). Hypertension is well known as a common comorbidity in patients with diabetes with its prevalence ranging from 60% to 80% (4). Hypertension in the diabetic individual markedly increases the risk and accelerates the course of cardiac disease. Diabetes mellitus has been known to be associated with lipid disorders and cardiovascular complications. Both diabetes mellitus and hypertension alter lipid and lipoprotein metabolism and increase the risk of coronary artery disease (5). Adiponectin is a hormone act as anti-inflammatory, improving the sensitivity of insulin and endothelial function and has an anti-atherogenic effect. Decreased adiponectin concentrations correlated with increase risk of coronary diseases (6). Type 2 diabetes mellitus and hypertension present with endothelial dysfunction and pro-inflammatory state which favoring atherosclerosis. Some authors suggest that decreased serum adiponectin concentrations are risk factors for hypertension and type 2 diabetes mellitus (3). MATERIAL AND METHOD A case-control study which included 150 type 2 diabetic patients (74 males and 76 females), 210 hypertensive type 2 diabetic patients (119 males and 91 females) who attended the diabetes center at AL-Sader Medical City, Najaf, Iraq and 150 healthy control. All participants were aged 40 years and older. The patients were diagnosed by specialist physicians based on WHO guidelines. Patients with any other chronic diseases and patients suffering from type 1 diabetes mellitus were excluded from the study. Major selection criteria for diabetes was fasting plasma glucose level of 126 mg/dL or greater and for hypertension was the untreated hypertensive patients. Standard blood pressure measurements were done using mercury sphygmomanometer. A detailed history was taken and the fasting estimation of serum TC, TG, LDL and HDL levels H a m e d J a d o o a D o n n . J . M e d . M e d . S c i . | 024 www.donnishjournals.org were done by using standard methods. Serum adiponectin levels were analyzed by ELISA. The study protocol was approved by Kufa Medical College Ethical Committee. Statistical analysis Student paired T-test and ANOVA test were done by using SPSS 20 windows software (SPSS Inc., Chicago, IL, USA). Values for the continuous variables are expressed as mean ± SD and a level of P < 0.05 was considered as statistically significant. RESULTS The anthropometric and biochemical parameters of the individuals in normotensive diabetics, hypertensive diabetes and healthy control groups are shown in table 1. The results showed significantly decreased (P<0.001) in fasting serum adiponectin and HDL concentrations in normotensive type 2 diabetic and hypertensive type 2 diabetic patients groups with respect to normal control. Whereas, the TC, TG, LDL and VLDL levels were significantly increased (P<0.001) in diabetic patients without hypertension and diabetes with hypertension when compared to normal control. Table II shows Serum adiponectin and lipid profile concentrations in T2DM patients with and without hypertension groups. Serum adiponectin and HDL levels were decline, whereas, TC, TG, LDL and VLDL levels were higher in hypertensive type 2 diabetic patients compared with non-hypertensive type 2 diabetic patients, although all these differences were not significant (P > 0.05). Table III shows adiponectin and lipid profile concentrations in T2DM females and males with and without hypertension. Female and male patients in the T2DM with hypertension groups had not significantly differences of adiponectin and lipid profile concentrations as compared to the patients in T2DM females and males without hypertension groups, respectively. DISCUSSION Adiponectin is a cytokine produced and secreted exclusively by adipocytes, and it modulates several obesity-induced pathophysiologic processes potentially involved in the development of hypertension (7). Adiponectin enhances peripheral tissue insulin sensitivity and promotes fatty acid oxidation (8). In patients with obesity-related metabolic disorders, improvements in insulin sensitivity (9) and fatty acid metabolism (10) concurred with lowering of blood pressure (BP). Adiponectin also stimulates the production of nitric oxide in endothelial cells, (11) and attenuates smooth muscle cell proliferation and migration (12), which exert direct benefits on the vascular system. Moreover, adiponectin can inhibit the production and activity of tumor necrosis factor in macrophages (13) and suppress the generation and release of reactive oxygen species. These anti-inflammatory and anti-oxidative properties may also contribute to the prevention of hypertension (14). Despite the evidence of the excess risk associated with the coexistence of HT and T2DM, very limited information exists on the etiology for this coexistence (15). Serum adiponectin was inversely associated with lipid levels and marker of inflammation, supporting the hypothesis that these factors potentially mediate the protective effect of adiponectin against hypertension. Prospective studies have indicated that hypoadiponectinemia is an independent risk factor for type 2 diabetes (16, 17) and coronary heart disease (18). The relation between adiponectin and BP or hypertension was less studied. An inverse correlation between adiponectin and Systolic BP and diastolic BP was found in cross- sectional studies of healthy individuals (19, 20). The results of this study showed significant (p < 0.001) lowering in fasting serum adiponectin hormone concentration for type 2 diabetic and type 2 diabetic with hypertension groups with respect to normal control. These results are in agreement with previous studies (21-24). The mechanism responsible for the decreased adiponectin concentration in type 2 diabetes mellitus has been obscure. TNF- is one of the candidate molecules responsible for causing insulin resistance (25). The expression and secretion of adiponectin from adipocytes were significantly reduced by TNF- in a dose and time-dependent manner via its promoter activity. The expression of adiponectin mRNA was reduced in the adipose tissue of insulin-resistant humans and rodents, where TNF- production was increased (26). Therefore, increased TNF- might be partially responsible for the decreased adiponectin production. The present study found that there was a significant increase (P<0.001) in serum TC, TG, LDL and VLDL in diabetic patients with or without hypertension, while HDL – cholesterol was declined significantly (P< 0.001) when compared to normal control. The dyslipidaemia that is often present in individuals with type 2 diabetes is characterized by hypertriglyceridaemia, raised LDL and a low HDL profile (27). The overstimulation of lipogenesis at the liver due to hyperinsulinaemic conditions is thought to be a critical component of the overproduction of lipid in type 2 diabetes (28). These observations of dyslipidaemia in with diabetes mellitus are in agreement with the finding of previous studies (29). In diabetic, patients without hypertension were low and not significant differences in serum adiponectin levels (P< 0.05) as compared to their levels in diabetic patients with hypertension group, these findings confirmed previous observation (30). The results also showed that there were higher and not significant differences (P< 0.05) in serum lipid profile levels in normotensive diabetic patients in comparison with hypertensive diabetic patients group, findings are consistent with many studies (29, 31. 32, 33). The current study also revealed that adiponectin levels and lipid profiles of normotensive type 2 diabetic male and female patients were higher and not statistically different from those of hypertensive diabetic male and female patients, respectively. It may be attributable to gender differences in adiposity. In addition, it is also possible sex-specific hormones, such as estradiol and testosterone, may also explain the sex difference in the association of adiponectin with diabetes and hypertension in this study (34, 35). CONCLUSION The major findings of this study showed that plasma adiponectin and lipid profile levels were not significantly reduced in hypertensive type 2 diabetic patients when compared with normotensive type 2 diabetic patients, also plasma adiponectin and lipid profile levels were not significantly different between normotensive type 2 diabetic females and males and hypertensive type 2 diabetic females and males, respectively. The current study demonstrated that hypo-adiponectinaemia and dyslipidemia significantly existed in normotensive and hypertensive type 2 diabetic patients compared with normal control. H a m e d J a d o o a D o n n . J . M e d . M e d . S c i . | 025 www.donnishjournals.org Table 1. The anthropometric and biochemical characteristics baseline of patients and control Variables T2DM without hypertension (No.=150) T2DM with hypertension (No.= 210) Control (No.= 150) P. value T2DM without hypertension vs. Control T2DM with hypertension vs. Control Age (y) 47.20± 6.07 49.1±6.45 47.22±6.63 0.978 0.008 BMI (kg/m2) 28.79± 4.93 30.77± 5.32 25.97± 5.03 P<0.001 P<0.001 Systolic BP(mm Hg) 123.44 ± 11.58 126.77 ± 17.15 118.3±4.2 P<0.001 P<0.001 Diastolic BP( mm Hg) 79.1± 8.75 81.98 ± 9.55 78.5±3.3 P<0.001 P<0.001 TC (mg/dL) 233.5 ± 35.28 235.44± 35.26 152.63±20.39 P<0.001 P<0.001 TG (mg/dL) 224.63± 40.52 229.90± 39.62 117.36±18.85 P<0.001 P<0.001 HDL (mg/dL) 48.41±6.79 47.45± 6.48 72.2± 6.01 P<0.001 P<0.001 LDL (mg/dL) 140.16± 37.00 142.00± 35.0 56.95± 21.82 P<0.001 P<0.001 VLDL (mg/dL) 44.92± 8.10 45.97± 7.92 23.47± 3.77 P<0.001 P<0.001 Adiponectin (μg/mL) 6.27± 2.49 5.48± 2.44 8.62± 2.85 P<0.001 P<0.001 Table II. Comparison between T2DM patients with and without hypertension. Variables T2DM without hypertension (No.=150) T2DM with hypertension (No.= 210) P. value Age (y) 47.2± 6.07 49.10±6.45 0.005 BMI (kg/m2) 28.79± 4.93 30.77± 5.32 P<0.001 TC (mg/dL) 233.50 ± 35.28 235.44± 35.26 0.987 TG (mg/dL) 224.63± 40.52 229.9± 39.62 0.221 HDL – C (mg/dL) 48.41±6.79 47.45± 6.48 0.181 LDL – C (mg/dL) 140.16± 37.0 142.00± 35.0 0.968 VLDL – C (mg/dL) 44.92± 8.1 45.97± 7.92 0.22 Adiponectin (μg/mL) 6.27± 2.49 5.48± 2.44 0.442 Table III. Adiponectin and lipid profile concentrations in T2DM females and males with and without hypertension. Variables T2DM females T2DM males without hypertension (No.= 75) with hypertension (No.= 92) P. value without hypertension (No.= 74) with hypertension (No.= 119) P. value Age (y) 46.6± 5.76 50.02±6.8 0.001 47.91± 6.33 48.31±6.13 0.666 BMI (kg/m2) 28.69± 5.2 30.29± 5.46 0.055 28.95± 4.66 31.08± 5.23 0.004 TC (mg/dL) 239.80± 26.94 240.29± 36.35 0.291 228.10± 36.48 233.54± 34.21 0.297 TG (mg/dL) 227.19± 42.63 228.0± 38.92 0.899 223.20± 37.41 230.6± 40.97 0.199 HDL (mg/dL) 48.14±6.88 48.02± 6.28 0.989 48.74±6.77 46.90± 6.59 0.066 LDL (mg/dL) 140.51± 38.43 146.10± 31.0 0.311 135.07± 38.6 140.15± 35.89 0.355 VLDL (mg/dL) 45.43± 8.52 45.60± 7.78 0.899 44.12± 7.48 46.63± 8.19 0.199 Adiponectin(μg/mL) 7.3± 2.39 7.07± 2.56 0.355 5.5± 2.16 5.82± 2.29 0.388 H a m e d J a d o o a D o n n . J . M e d . M e d . S c i . | 026 www.donnishjournals.org ACKNOWLEDGEMENTS We thank all patients who participated in this study. REFERENCES 1. Tchaicaya A, Braun M, Lorenz N, Delagardelle C, Beissd J. Social inequality in awareness of cardiovascular risk factors in patients undergoing coronary angiography. Eur J prev cardiol, 2013; Vol (20), 5:872-879. 2. Gregory L, Bryan K, Derida c Y, David R, Bruce J, Psaty J, Rotter D, Siscovick S, Ian H B. Glucose insulin and incident hypertension in the multiethnic study of atherosclerosis; American journal of epidemiology; 2010, 172(10)1144-1154. 3. Rubio G A, Cabrera M J, Vargas R H, Maceda S A, Lozano N J, Escalante A B. Correlation between Levels of circulating adipokines and adiponectin/resistin index with carotid intima-media thickness in hypertensive type 2 Diabetic Patients. Cardiology 2013; 125:150-153. 4. Basevi V, Dimario S, Morciano C, Nonino F, Magrini N. American diabete Association standard of medical care in diabetes; 2011, 34 (suppl. 1): S 11- S 61. 34 (5). 5. Godkar D. Text book of medical laboratory technology; ed. 2 Bahlani Publishing house; 2003, S: 176-233. 6. Li Z Y, Wang P, Miao CY. Adipokines in inflammation, insulin resistance and cardiovascular disease. Clin Exp Pharmacol Physiol 2011; 38:888-896. 7. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterio- scler Thromb Vasc Biol 2004; 24:29 –33. 8. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating amp-activated protein kinase. Nat Med 2002; 8:1288–95. 9. Ikeda T, Gomi T, Hirawa N, Sakurai J, Yoshikawa N. Improvement of insulin sensitivity contributes to blood pressure reduction after weight loss in hypertensive subjects with obesity. Hypertension 1996; 27:1180–6. 10. Ferrier KE, Muhlmann MH, Baguet JP, Cameron JD, Jennings GL, Dart AM, Kingwell BA. Intensive cholesterol reduction lowers blood pressure and large artery stiffness in isolated systolic hypertension. J Am Coll Cardiol 2002; 39:1020 –5. 11. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon M J. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 2003; 278:45021– 6. 12. Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N, et al. Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem. 2002; 277: 37487–91. 13. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 2000; 96:1723–32. 14. Motoshima H, Wu X, Mahadev K, Goldstein BJ. Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL. Biochem Biophys Res Commun 2004; 315: 264 –71. 15. Savoia C, Schiffrin EL. Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic interventions. Clin Sci (Lond). 2007; 112:375–384. 16. Spranger J, Kroke A, Mohlig M, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF. Adiponectin and protection against type 2 diabetes mellitus. Lancet 2003; 361:226–8. 17. Lindsay RS, Funahashi T, Hanson RL, Matsuzawa Y, Tanaka S, Tataranni PA, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 2002; 360:57– 8. 18. Pischon T, Girman CJ, Hotamisligil G S, Rifai N, Hu F B, Rimm E B. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004; 291:1730–7. 19. Huang KC, Chen C L, Chuang L M, Ho S R, Tai T Y, Yang W S. Plasma adiponectin levels and blood pressures in nondiabetic adolescent females. J Clin Endocrinol Metab 2003; 88:4130–4. 20. Yamamoto Y, Hirose H, Saito I, Tomita M, Taniyama M, Matsubara K, et al. Correlation of the adipocyte-derived protein adiponectin with insulin resistance index and serum high-density lipoprotein-cholesterol, independent of body mass index, in the Japanese population. Clin Sci 2002; 103:137– 42. 21. Durrani S, Shah J, Khan M A, Jan M R, Rahman U. Relationship of hypoadiponectinemia with glycemic status and lipid profile in type 2 diabetic women with and without coronary heart disease. Biomedica, Oct. – Dec. 2014, Vol. 30, Issue 4, Bio-8. Doc P. 289 – 293. 22. Sadaf D, Jasmin S, Mudassir A K, Muhammad R J. Hypoadiponectinemia and dyslipidemia in relation to glycemic status in type 2 diabetic and coronary heart disease. KMUJ 2014, Vol. 6 No. 4. 23. Ashraf N K, Nabeel E W. Evaluation of Adiponectinin Patients with Type 2 Diabetes Mellitus in Erbil City. Inter- national Journal of Science and Research (IJSR), April 2016, Volume 5 Issue 4. 24. Chen MP, Chung FM, Chang DM, et al. Elevated plasma level of Visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J Clin. Endocrinol. Metab., (2005): 90(6):3665-72 25. Hotamisligil GS, Arner P, Caro JF, et al. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest., (1995):95:2409–2415. 26. Statnick MA, Beavers LS, Conner LJ, et al. (2000) Decreased expression of apM-1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes. Int J Exp Diabetes Res., 1:81–88. 27. Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care. 2004; 27:1496-504. 28. Adeli K, Taghibiglou C, Van Iderstine SC, Lewis GF. Mechanisms of hepatic very low-density lipoprotein overproduction in insulin resistance. Trends in Cardiovascular Medicine. 2001; 11:170-6. 29. Dena A. Hashim. Serum Lipid Profiles in Hypertensive Diabetes Mellitus Type 2 Patients. Journal of Al-Nahrain University. 2015; Vol.18 (1), pp.130-135. 30. Rubio G A, Vargas R H, Suárez C J, Lozano N J. Levels of Adipocytokines in Patients with Diabetes Type 2, Normotense and Hypertense. Med Int Mex 2014; 30:146-151. 31. Anne S A, Theis P S, Ronan M G, Kira D S, Bo F R, Bente K P, Kirsten M. Type 2 diabetes mellitus is associated with impaired cytokine response and adhesion molecule expression in human endotoxemia. Intensive Care Med. 2010. 32. Lorenzo G, Dalip R, Errol Y S, Eric C K, Donovan M, Martorell E. Lipid Profile of Type 2 Diabetic and Hypertensive Patients in the Jamaican Population. Journal of Laboratory Physicians; Jan-Jun 2010; Vol-2, Issue-1. 33. Qasim M T, Mahdi M R, The FTO Gene Polymorphism (Rs9939609) as Predictor for Hypertension in Iraqi Type 2 Diabetic Patients. Indian journal of applied research. 2016.Vol : 6, Issue: 6. 34. Combs TP, Berg AH, Rajala MW, Klebanov S, Iyengar P, Jimenez C J, et al. Sexual differentiation, pregnancy, calorie restriction and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes. 2003; 52:268–76. 35. Xu A, Chen KW, Hoo RL, Wang Y, Tan KCB, Zhang J, et al. Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. J Biol Chem. 2005; 280:18073–80. أخرى 01/01/2018 01/01/2018

أوسمة منصة أريد

اسم الوسام تاريخ الحصول عليه
وسام الصفحة المتميزة 24/04/2019
باحث مبادر 23/12/2016

الأعضاء المتابعون لهذا الحساب ( 25)

د. جمال عناق د. سردار رشيد حمةصالح ايمان محمد امين حسن بني عامر خالد صلاح حنفى محمود الحسين بشــوظ محمد وسيم محمد خليل أ.د. علاء هاني الجراخ أحمد قويدري محمد حسن عبد سمير نور الدين دردور أستاذ مساعددكتور هدى محمدسلمان كاروان جعفر عبدالرحمن الدوسكي ريهام محي الدين محمد عبد السلام حسين البتيتي حسن الخليفة عثمان خوله حمد خلف سلوى على إبراهيم الجيار الباحثة نبراس حسين مهاوش العزاوي حسين علي مهدي الدكتور محمد الجرادين نجوان عبدالرزاق حمد هدى مصطفى حسين طيف ماجد عبد الحسين د/ رمضان رابح فراس أحمد موسى مهيدات أ.م .د. بشرى داود السنجري

الأعضاء الذين يُتَابِعُهم ( 132)

د.سيف يوسف السويدي ابتسام علي سالم حلالي معاذ عبد الغني يونسو البروفيسور الدكتور هاشم حسين ناصر المحنك نجوان عبدالرزاق حمد مهند المهداوي الباحثة نبراس حسين مهاوش العزاوي شروق جواد الجبوري الدكتور محمد الجرادين الاستاذ المساعد الدكتور نهاد عبد اللطيف علي خوله حمد خلف ربيعة جدوع عباس شنوف سلوى على إبراهيم الجيار آية صديق عبد الرحمن علي حسن الخليفة عثمان د. عبد الرحمن الجاموس د.عبد القادر صالح الحديثي سيسي أحاندو ريهام محي الدين محمد عبد السلام حسين البتيتي زينب ج هالة دغمان محمد اسماعيل فايد د. منشد فالح وادي فاطمة عبدالله غندور ا. م. د مثنى مشعان المزروعي رباب سالم حمد رمضان عيسى الليموني نهى عبدالعال أمين هدى صلاح رشيد د.منى صلاح رشيد الدولة الدكتورة رجاء عبدالله عيسى السالم رمضاني مريم أ.د/ حمدي نور الدين عبداللاه أحمد د. مروة عزمى جنينة سامر يعقوب د.نيللي السيد الرفاعي عاشور د.عبد الناصر جاسم الجاسم د.هناء محمد خلف الشلول د.حمودة عبد الواحد حمودة محمد قاسم ياسين حمادي السعيد الدكتور عماد هادي علو كاروان جعفر عبدالرحمن الدوسكي وفاء كردمين زينب شنوف احمد السالم د. سلوى عبد الرحمن على سليمان أ.د.شوكت كاظم جواد حمزة الفيل سمير نور الدين دردور أستاذ مساعددكتور هدى محمدسلمان حنان حقي االخياط أ.د.اميره محمود محمد الراوي غنيّة بوحويّة د.هيثم عاطف حسن أ.م .د. بشرى داود السنجري أحمد جدو اعليه د.علي خلف حسين العبيدي د. إبراهيم فريج حسين محمد محمد حسن عبد ميسوم ليلى نعيمة دريس عباس زهرة الباحثة أسمهان زينب حدمر بن درف كنزة مهدي بلحميتي وفاء ماهر عطية هاشم د.صلاح الحمداني لعجال باية تحلايتي خيرة أمين دوقاني محمد وسيم محمد خليل أ.د. علاء هاني الجراخ د. ميساء صالح مهدي الشكري أحمد قويدري د. محمد كسار الزبيدي فاطمة محمد محمد سعيد عبدالفتاح راسم حسن الحسين بشــوظ صابر علام عثمان علام نجوى أحمد عبدالله واعر محمد خالد هبه مصطفى محمد محمد الجلالي د. سمير مشرف خلف الدليمي عبد الجبار عبد الحميد حمد الخزرجي مروة محمد محمد الباز خالد صلاح حنفى محمود د/ زينب محمود محمد كامل عطيفي الاستاذ الدكتور طارق خلف حسن الجميلي قاسم عبد عوض المحبشي د.يسرى خالد إبراهيم العنكبي دعاء عبد الرحمن احمد الشنطي أ. م. د هناء محمود اسماعيل الجنابي سميرة دعاشي جاسم محمد صالح الدليمي الاستاذ الدكتور عماد ابراهيم على السلطان سليماني صبرينة وسام ابراهيم السامرائي الدكتورة تقية فرحي عمر محمد شحادي وليد خالد احمد آلاء مهدي الشيخلي نوال يوسف بومشطة الأستاذ الدكتورعبدالرازق مختار محمود أحمد عبد المجيد محمد رواش حامد ابراهيم ايمان محمد امين حسن بني عامر د. سردار رشيد حمةصالح د. عدنان خلف حميد البدراني سحقي سمر وئام نصير خضير طاهر محمد عبده الأهدل د.يوسف عبدالله السويدي أسماء فرحات يعقوب جيولك د.إيمان حدمسعود سعد صبار دحام عبد الرحمن ملاح ميثاق صادق محمود هزاع المليكي سليمان عبد عنتر د. محمد سعيد محرز الزريقي عماد حمد عبدالله المحلاوي يامن الخطيب نسرين محمد ناجي النمنم طاهر عبد القادر رقية شوشان الدكتورة رقية بوسنان محمد محمد عبد الدايم الأستاذ الدكتور هاشم حسين ناصر المحنك روى مؤيد محمود عبدالرحمن عبدالعزيز مجرشي د. جمال عناق

التخصصات الفرعية

التقنية الحيوية الكيمياء الحيوية وكيمياء التغذية التقنية الحيوية الفسيولوجيا الأمراض الباطنية والمعدية الكيمياء الحيوية وكيمياء التغذية

المهارات

التوجيه في الحياة العمل الجماعي الصحة علاقات دولية علم النفس التدريب التغذية

الرجوع إلى صفحة البحث